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A density-functional theory study of the confined soft ellipsoid fluid
David L. Cheung and Friederike Schmid
Theoretische Physik, Universita¨t Bielefeld, D-33615 Bielefeld, Germany

~Received 9 January 2004; accepted 19 February 2004!

A system of soft ellipsoid molecules confined between two planar walls is studied using classical
density-functional theory. Both the isotropic and nematic phases are considered. The excess free
energy is evaluated using two differentAnsätzeand the intermolecular interaction is incorporated
using two different direct correlation functions~DCF’s!. The first is a numerical DCF obtained from
simulations of bulk soft ellipsoid fluids and the second is taken from the Parsons–Lee theory. In
both the isotropic and nematic phases the numerical DCF gives density and order parameter profiles
in reasonable agreement with simulation. The Parsons–Lee DCF also gives reasonable agreement in
the isotropic phase but poor agreement in the nematic phase. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1703522#

I. INTRODUCTION

The behavior of fluids near surfaces and interfaces has
attracted great interest in recent years. The presence of a
surface breaks the translational symmetry of the fluid, lead-
ing to behavior radically different to that in the bulk. This is
particularly true for liquid crystals.1 Many applications for
liquid crystalline materials rely on the ability to manipulate
the preferred alignment through the action of an external
field. This behavior is strongly influenced by coupling be-
tween the liquid crystal and bounding surfaces.

As may be expected from above, there have been many
studies of liquid-crystal systems near surfaces. Experimental
studies have been performed using methods such as scanning
tunnelling microscopy,2 atom force microscopy,3 and NMR,4

among others. There have also been simulation studies, using
lattice models,5 hard6,7 or soft single site models,8 and a few
studies using atomistic models.9 It has also been studied by
the all commonly used theoretical methods in liquid-crystal
science. Both elastic theory and Landau–de Gennes10 theory
have been applied to this. However, the former makes some
assumptions~e.g., slow director variation! that are invalid
near a solid substrate, while the latter introduces phenomeno-
logical parameters that are not easily related to microscopic
properties. Last, there have been several studies using
density-functional theory~DFT!,6,7,11–13or integral equation
methods.14,15

In this paper we study a liquid-crystal fluid near a solid
substrate using DFT.16,17DFT in principle provides a route to
the thermodynamic properties of a fluid from knowledge of
its microscopic~molecular! properties. The intermolecular
potential is incorporated through the excess free-energy
functional. While the exact form of this is unknown a num-
ber of approximations to this are commonly used, such as
Onsager theory18 and Parsons–Lee theory.19–21

Previous DFT calculations for liquid-crystalline systems
have been hindered as the exact direct correlation function
~DCF! is unknown. Commonly, this is approximated by the
Mayer f function,

f ~r12,u1 ,u2!5exp$2bV~r12,u1 ,u2!%21, ~1!

where V(r12,u1 ,u2) is the intermolecular potential andb
51/kBT is the inverse temperature.r12 andu1 are the inter-
molecular vector and the orientation vector of molecule 1,
respectively. For a hard potential, for which DFT calcula-
tions have mostly been limited to, the integral of the Mayer
function gives the excluded volume between two particles.

However, recently the DCF has been calculated for the
soft ellipsoid model for a number of state points in both the
nematic and isotropic phase.22–24It has been shown to repro-
duce the bulk properties of the nematic fluid such as the
elastic constants.22 Thus it is hoped that this may provide a
good description of the structure of the inhomogeneous fluid.

In this paper we consider one of the simplest situations:
a fluid of ellipsoidal molecules interacting with a structure-
less wall. Both isotropic and nematic phases are considered.
The paper is arranged as follows: In the next two sections the
theory~Sec. II! and computational method are outlined~Sec.
III !. The results are then given in Sec. IV and a short sum-
mary follows in Sec. V.

II. THEORY

A. Density-functional theory

For a system of uniaxial molecules the grand potential
can be written as

bV@r~r ,u!#5bF id@r~r ,u!#1bFex@r~r ,u!#

1bE drduVext~r ,u!r~r ,u!

2bmE drdur~r ,u!, ~2!

wherer~r ,u! is the orientationally dependent single-particle
density distribution,Vext(r ,u) is the external potential, andm
is the chemical potential.F id@r(r ,u)# and Fex@r(r ,u)# are
the ideal and excess free energies, respectively. The ideal
free energy is given by

bF id@r~r ,u!#5E drdur~r ,u!@ ln@l3r~r ,u!#21#, ~3!
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wherel is the thermal de Broglie wavelength. The excess
free energy is in general unknown. Here we use twoAnsätze
for Fex@r(r ,u)#. In the first Fex@r(r ,u)# is in the spirit of
Onsager theory,17,18

bFex@r~r ,u!#52 1
2 E dr1du1dr2du2c~r12,u1 ,u2!

3r~r1 ,u1!r~r2 ,u2!, ~4!

wherec(r12,u1 ,u2) is the direct correlation function.
In the secondFex@r(r ,u)# is taken to be a density ex-

pansion around the homogenous fluid with densityr0(u)
truncated at the second-order term,25

bFex@r~r ,u!#52E dr1du1c~1!~u1!@r~r1 ,u1!2r0~u!#

2 1
2 E dr1du1dr2du2c~r12,u1 ,u2!

3$r~r1 ,u1!2r0~u1!%

3$r~r2 ,u2!2r0~u2!%, ~5!

wherer0(u) is the density for the bulk, homogenous fluid
andc(1)(u) is the first-order direct correlation function. This
can be identified with the excess chemical potential (bmex

52c(1)).25

For fixed external and chemical potentials, the equilib-
rium single-particle density is that which minimizes the
grand potential. This is a solution to the Euler–Lagrange
equation,

dV@r~r ,u!#

dr~r ,u!
50, ~6!

ln$l3r~r ,u!%2bm~u!1bV~r ,u!1
d$bFex@r~r ,u!#%

dr~r ,u!
50.

~7!

The chemical potential is found from the Euler–
Lagrange equation of the bulk, homogeneous fluid, i.e., sub-
stituting r(r ,u)5r0(u) into Eq. ~7! for both Ansätze for the
excess free energy.

The external potential is given by a repulsive Lennard-
Jones potential,

Vext~z!5H 4F S 1

z10.5D
12

2S 1

z10.5D
6G11,

if z,21/620.5,

0, otherwise.

~8!

This potential acts upon the molecular centres, thus giving
rise to homeotropic~normal! alignment at the surface.

B. Direct correlation function

The direct correlation function~DCF!, c(r i j ,ui ,uj ), is
the central quantity in many theories of liquids and liquid
crystals. For liquid-crystalline systems the simplest approxi-
mation to the DCF is that of Onsager where the DCF is taken

to be the Mayerf function. This corresponds to truncating the
virial expansion at the second term, and thus is valid only for
low densities and large elongations.

In this paper, two different forms of the DCF are consid-
ered. The first is a numerical DCF calculated from simula-
tions of soft ellipsoid molecules.22–24In principle this should
be an exact representation of the interactions within the fluid.

The second form is taken from Parsons–Lee theory.19–21

This corresponds to a resummed virial series truncated, as in
Onsager theory, at the second-order term. Thus the Parsons–
Lee DCF is the Mayerf function multiplied be a density-
dependent prefactor,

cPL~r12,u1 ,u2!5
h~423h!

~12h!2 f ~r12,u1 ,u2!, ~9!

where h5rymol is the packing fraction. To calculate the
Mayer function the intermolecular potential is required. For
the soft ellipsoids considered in this paper, the potential is
given by

V~r12,u1 ,u2!54F S s0

r 122s~ r̂12,u1 ,u2!1s0
D 12

2S s0

r i j 2s~ r̂12,u1 ,u2!1s0
D 6G , ~10!

where

s~ r̂ i j ,ui ,uj !5s0F12
x

2 H ~ r̂ i j •ui1 r̂ i j •uj !
2

11xui•uj

1
~ r̂ i j •ui2 r̂ i j •uj !

2

12xui•uj
J G21/2

, ~11!

and x5(k221)/(k211), wherek is molecular length-to-
breadth ratio, equal to 3 for the system considered here.

In both theories the DCF is taken to be that of the bulk,
homogeneous fluid~i.e., the density in the prefactor in Eq.
~9! is fixed to be the bulk density!. Extension of Parsons–Lee
theory to inhomogeneous densities~i.e., a prefactor that de-
pends on the spatially varying density! is possible although
nontrivial26–28and application of this is beyond the scope of
this paper.

III. METHOD

Following Allen,6,7,29 angular-dependent functions are
expended in spherical harmonics. The single-particle density
and its logarithm become

r~r ,u!5(
l ,m

r lm~r !Ylm* ~u! ~12!

and

ln$l3r~r ,u!%5(
l ,m

r̃ lm~r !Ylm~u!. ~13!

The use of the complex conjugate in Eq.~12! ensures
r(r ,u)ln$l3r(r ,u)%5( l ,mr lm(r ) r̃ lm(r ).

Similarly, the direct correlation function is expanded as
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c~r12,u1 ,u2!5 (
l 1 ,l 2 ,l ,m1 ,m2 ,m

cl 1m1l 2m2lm~r 12!

3Yl 1m1
~u1!Yl 2m2

~u2!Ylm~ r̂12!. ~14!

In the above sums, 0< l< l max and 2 l<m< l . Symmetry
dictates thatm11m21m50 and thatl 1 , l 2 , andl are even.

For a homogeneous fluid confined between two struc-
tureless walls with the wall normal in thez direction the
density and its logarithm are functions ofz only.

For the firstAnsatzto the excess free energy, substituting
Eqs.~12!, ~13!, and~14! into the grand potential Eq.~2! and
performing angular andx andy integrations gives

bV@r~z,u!#

A
5E

0

L

dz(
l ,m

r lm~z!$r̃ lm~z!2A4pd l0%1(
l ,m

bE
0

L

dzVlm~z!r lm~z!2A4pbmE
0

L

dzr lm~z!

2 (
l 1 ,l 2 ,m

1

2 E
0

L

dz1E
0

L

dz2Cl 1l 2m~ uz12z2u!r l 1m~z1!r l 2m̄~z2!. ~15!

The Vlm(z) are the components of the spherical harmonics
expansion of the external potential @V(z,u)
5( l ,mVlm(z)Ylm(u)#. For the potential given above, the
only nonzero term isV00(z)5A4pVext(z).

Cl 1l 2m(z) is the integral of the DCF overr andf for a

fixed z, given by

Cl 1l 2m~z!5(
l

A~2l 11!pE
z

`

drrcl 1ml2m̄l0~r !Pl S z

r D ,

~16!

wherePl(x) is the l th Legendre polynomial.
Similarly the grand potential for the secondAnsatzbe-

comes

bV@r~z,u!#

A
5E

0

L

dz(
l ,m

r lm$r̃ lm~z!2A4pd l0%1(
l ,m

bE
0

L

dzVlm~z!r lm~z!2(
l ,m

bm lmE
0

L

dzr lm~z!

2
1

2 (
l 1 ,l 2 ,m

E
0

L

dz1E
2`

`

dz2Cl 1l 2m~ uz12z2u!r l 1m~z1!@r l 2m̄~z2!22r lm
0 #

2
1

2 (
l 1 ,l 2 ,m

E
0

L

dz1E
2`

`

dz2Cl 1l 2mr l 1m
0 r l 2m̄ , ~17!

wherem lm5 f̃ ldm0 and f̃ l are the spherical harmonics coeffi-
cients of the logarithm of the bulk orientational distribution
function. Note that herem includes contributions from the
linear term in the excess free energy Eq.~5! and thus de-
pends on orientation.

The equilibrium particle densities are found by tabulat-
ing the grand potential on a regular grid and then numeri-
cally minimizing Eq. ~15! or Eq. ~17! with respect to the
r̃ lm(z). This numerical minimization is performed using the
conjugate gradients method.30 The calculations were taken to
be converged when the fractional change in energy between
iterations was less than 0.001~i.e., Enew2Eold

,0.001Enew). Spatial integrals were evaluated using the tra-
pezium rule with a grid spacing of 0.04, while angular inte-
grations were performed using Gauss–Legendre quadrature
with 800–6400 points.

Once the equilibrium orientationally dependent density
r(z,u) is known, the bulk density can be calculated by inte-
gration over the angular variables, i.e.,

r0~z!5E dur~z,u!5A4pr00~z!. ~18!

Similarly the second rank order parameter profilep2(z) can
be calculated from13

p2~z!5
*dur~z,u!P2~u!

*dur~z,u!
,

~19!

p2~z!5
1

A5

r20~z!

r00~z!
.

IV. RESULTS

A. Density and order parameter profiles

1. Isotropic phase

First we present results for calculations performed in the
isotropic phase, withr* 50.24 andT* 50.5. Shown in Fig. 1
are the density and order-parameter profiles obtained from
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DFT calculations. Shown for comparison are profiles found
from molecular-dynamics simulations of a confined system
of soft ellipsoids.

As can be seen from Fig. 1~a! the density profiles found
from DFT calculations using Eqs.~4! and ~5! are virtually
indistinguishable. The DFT profiles share the same gross fea-
tures as those obtained from simulation. There is a strong
maximum at aboutz50.68, followed by a minimum at about
z51.44. There is also a weak maximum at aboutz53.4 in
the DFT profiles andz53 in the simulation data. Both the
DFT and simulation profiles rapidly tend towards the bulk
density.

The most obvious difference between the DFT and simu-
lation results is the height of the first peak. In the profile
obtained from the DFT calculations the height of the first
peak is about 2.02, while in the simulation data it is approxi-
mately 1.61.

Shown in Fig. 1~b! are the order-parameter profiles ob-
tained from DFT calculations and simulation. As can be seen
the agreement between the two profiles here is not as good as
for the density. Both the DFT and simulation data have peaks
at aboutz50.64. This peak arises due to the effect of the
surface on the ordering of the molecules. The heights of
these peaks are both aboutp250.64. This initial peak is then
followed by a decrease in the order parameter.

In the DFT calculations the order parameter then be-
comes negative with a minimum at aboutz52.4. The profile

found from simulation has a minimum at about the same
distance, although in this case the order parameter remains
positive. Another maximum is present at aboutz53.3 in the
simulation data. This is also present in the profiles obtained
from DFT calculations, although of much smaller magnitude.
Both profiles then rapidly decay to a constant value close to
0 indicating isotropic ordering in the bulk of the cell.

Shown in Fig. 2 are the density and order-parameter pro-
files obtained from DFT calculations using the Parson–Lee
DCF. As for those obtained using the numerical DCF, the
density profiles@Fig. 2~a!# using Eqs.~4! and ~5! are essen-
tially identical and in good agreement with the profile ob-
tained from simulation. Again a major discrepancy between
the DFT and simulation profiles is the height of the first
peak. In this case, however, the peak height is underesti-
mated by the DFT calculations, 1.23 compared to 1.61 for
the simulation profile.

The order-parameter profiles are shown in Fig. 2. As can
be seen, the first peak in the order-parameter profiles ob-
tained from DFT calculations is much smaller than in the
simulation profile and those found from DFT calculations
using the numerical DCF. For molecules with length-to-
width ratio of 3, Parsons–Lee theory predicts an isotropic–
nematic transition at aboutr50.32,21 whereas for simulation
the transition is atr50.284. Thus for Parsons–Lee theory it
is further from the nematic phase, and hence at lower order,
than in simulation.

FIG. 1. ~a! Density profiles for isotropic fluid withr* 50.24 andT*
50.5. The solid line is the simulation data, the dashed line shows the data
obtained from DFT calculations using Eq.~4! and the numerical DCF, and
the dotted line shows the data obtained from DFT calculations using Eq.~5!
and the numerical DCF.~b! Order-parameter profiles for isotropic fluid with
r* 50.24 andT* 50.5. Same symbols as in~a!.

FIG. 2. ~a! Density profiles for isotropic fluid withr* 50.24 andT*
50.5. The solid line is the simulation data, the dashed line is data obtained
from DFT calculations using Eq.~4! and the Parsons–Lee DCF, and the
dotted line shows the density profile obtained from DFT calculations using
Eq. ~5! and the Parsons–Lee DCF.~b! Order-parameter profiles for isotropic
fluid with r* 50.24 andT* 50.5. Same symbols as in~a!.
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2. Nematic phase

Shown in Fig. 3 are the density and order-parameter pro-
files for the nematic phase (r* 50.30 andT* 50.5) calcu-
lated using DFT calculations and Monte Carlo simulation. In
the simulations, the cell size was adjusted so that the average
density in the cell bulk was 0.30 to aid comparison between
simulation and theory. As can be seen the profiles obtained
from DFT calculations using Eqs.~4! and ~5! are in better
agreement with each other than with the simulation profiles.

The density profiles are shown Fig. 3~a!. As in the iso-
tropic case, there is an initial peak in the density profile at
aboutz50.6. There are then further peaks. In the DFT pro-
files these subsequent peaks are atz53.5, z56.3, andz
59.4. In the simulation profile, these are atz53.2, z55.6,
andz57.9. A similar difference has been seen in comparison
between DFT calculations and simulations for simple
fluids.31,32 This was explained due to the imposition of ho-
mogeneity in the transverse~x andy! directions in the theo-
retical calculations.31

Aside from the positions of these secondary peaks, the
other noticeable difference between the DFT and simulation
profiles are in the heights of these peaks. As in the isotropic
case the height of the initial peak is overestimated compared
to simulation. The initial peak in the DFT calculations has a
height of 3.9, while in the simulation profile its height is 2.9.
In contrast to the isotropic phase, the secondary peaks in the
DFT profile are more noticeable than those in the simulation

profile. These secondary peaks are also stronger in the DFT
profile calculated using Eq.~4! than those in the profile cal-
culated using Eq.~5!. These peaks indicate surface induced
layering.1 This has been observed in by x-ray reflectivity
measurements, both at the nematic–solid interface as studied
here and at the free nematic interface.

The second rank order parameter profiles are shown in
Fig. 3~b!. Again these show a strong initial peak at approxi-
matelyz50.6. This is then follow by a series of peaks before
decaying to a bulk values as for the density profiles. These
peaks are at approximately the same positions as the peaks in
the density profiles. As for the density profile the secondary
peaks are stronger than those in the simulation profile. In the
center of the cell the DFT order parameters reach constant
values. For Eq.~4! the order parameter in the center of the
cell is 0.65, whereas for Eq.~5! p2(z)50.69. These values
are close to the bulk of 0.69. The order parameter in the
center of the cell from simulation is 0.74, higher than the
bulk value.

One major difference between the DFT and simulation
profiles is the decay of the initial peak. In the DFT profile
there is a rapid decay from the first peak that is not seen in
the simulation profile. This can also be seen, albeit not as
dramatically, in the order-parameter profiles for the isotropic
fluid ~Figs. 1 and 2!.

Shown in Fig. 4 are the density and order-parameter pro-
files calculated using the Parsons–Lee DCF and those from

FIG. 3. ~a! Density profiles for nematic fluid withr* 50.30 andT* 50.5.
The solid line is the simulation data, the dashed line is the data obtained
from DFT calculations using Eq.~4! and numerical DCF, and the dotted line
shows the data obtained from DFT calculations obtained from DFT calcu-
lations using Eq.~5! and the numerical DCF.~b! Order-parameter profiles
for nematic fluid withr* 50.30 andT* 50.5. Same symbols as in~a!.

FIG. 4. ~a! Density profiles for nematic fluid. The solid line is the simulation
data (r* 50.30 andT* 50.5), the dashed line is data obtained from DFT
calculations using Eq.~4! and Parsons-Lee DCF (r* 50.35 andT* 50.5),
and the dotted line shows the data obtained from DFT calculations using Eq.
~5! and Parsons–Lee DCF (r* 50.35 andT* 0.5). ~b! Order-parameter pro-
files for nematic fluid. Same symbols as in~a!.
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simulation. For this model, Parsons–Lee theory predicts that
a system withr* 50.30 is isotropic,21 these calculations
were performed with a higher bulk density (r* 50.35).
While this difference makes detailed comparison impossible,
it is small enough for qualitative comparison.

As can be seen, the density and order-parameter profiles
calculated using Eqs.~4! and~5! are essentially identical and
are similar to the profiles calculated in the isotropic phase
using the Parsons–Lee DCF. This can be understood, as the
Parsons–Lee DCF is proportional to the Mayer function at
all densities, so aside from a constant the Parsons–Lee DCF
is the same in both the isotropic and nematic phases. This
leads to a lack of structure in the nematic density and order-
parameter profiles compared to those from simulation and
DCF calculations using the numerical DCF.

B. Variable cell width

In this section, the effect of varying the width of the cell
is examined. A fluid confined between two planar walls is
often used in the evaluation of the depletion force between
two colloidal particles.14 Here the surface free energyg,
given by the excess~over bulk! grand potential per unit
area,17

bg5
bV@r~z,u!#2bV@r0~u!#

2A
, ~20!

is calculated for cell widths from 4 to 40s.
The surface free energy as a function of cell width is

shown in Fig. 5. In all cases the it reaches a constant value
for large cell widths~which is the surface tension!. For large
cell widths the walls become isolated from each other with a
layer of bulk fluid intervening between the surface regions of
fluid. At smaller cell widths there is no bulk fluid layer so the
surface layers interact directly, leading to variation in the
surface free energy with cell width. This behavior is gener-
ally oscillatory where the distance between peaks is of the
order of the molecular length~2–3s!.

Shown in Fig. 5~a! is the surface free energy as a func-
tion of cell width calculated using the numerical DCF. As
can be seen the surface free for the nematic fluid is of larger
magnitude than that of the isotropic fluid and shows much
stronger variation with cell width. For the isotropic fluid it
reaches a constant value for cell widths greater than about
16s. In contrast, in the nematic fluid it only approaches a
constant value for cell widths greater than about 25s. This
results from the larger range of the DCF in the nematic phase
compared to in the isotropic phase.

Figure 5~b! shows the surface free energy as a function
of cell width calculated using the Parsons–Lee DCF. As for
the numerical DCF the surface free energy in the nematic
phase is of greater magnitude and shows stronger variation
with cell width than in the isotropic phase. In both the nem-
atic and isotropic phases the it is constant forL greater than
about 18s. This is in contrast to the behavior of the surface
tension for the numerical DCF.

V. SUMMARY

In this paper the structure of a fluid of soft ellipsoids
near a soft wall is determined using density-functional theory
calculations. The calculated density and order parameters
have been compared to simulation results for the same sys-
tem. Within the DFT calculations the excess free energy was
obtained using both a numerical direct correlation function
and a well-known approximation to the DCF. Two different
Ansätze were used for the excess free energy, giving very
similar results to each other.

There is qualitative agreement between the profiles
found using the DFT method and those from simulation. The
agreement is better in the isotropic phase, than for the nem-
atic. In the isotropic case, the DFT calculations give profiles
that appear to be less structured than those from simulation.
This situation is reversed in the nematic phase.

For the isotropic phase, the Parsons–Lee DCF gave pro-
files similar to those from the numerical DCF. However, in
the nematic phase the Parsons–Lee DCF gave profiles that
were much less structured than those from the numerical
DCF and simulation.

The variation in the surface free energy as a function of
cell width has also been examined. For larger cell widths it is

FIG. 5. ~a! Variation of surface free energy with cell width calculated using
the numerical DCF. The solid line with circles shows the energy of the
isotropic fluid calculated using Eq.~4!, the dashed line with circles shows
the energy of the isotropic fluid calculated using Eq.~5!, the solid line with
squares shows the energy of the nematic fluid calculated using Eq.~4!, and
the dashed line with squares shows the energy of the nematic fluid calcu-
lated using Eq.~5!. ~b! Variation of the surface free energy with cell width
calculated using the Parsons-Lee DCF. The solid line with circles shows the
energy of the isotropic fluid calculated using Eq.~4!, the dashed line with
circles shows the energy of the isotropic fluid calculated using Eq.~5!, the
solid line with squares shows the energy of the nematic fluid calculated
using Eq.~4!, and the dashed line with squares shows the energy of the
nematic fluid calculated using Eq.~5!.
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a constant, whereas for small cell widths it reflects strong
oscillatory interactions between the two surfaces.

In summary, the simple density functionals used in this
paper, which are based on a second-order density expansion
of the excess free energy, already give profiles which are in
qualitative agreement with simulations. We still observe
quantitative deviations, especially in the nematic phase.
Therefore it will be interesting to compare these results with
profiles obtained from more sophisticated density function-
als, e.g., the Somoza–Tarazona functional26 or the recently
proposed modified Rosenfield functional.33
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