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A density-functional theory study of the confined soft ellipsoid fluid

David L. Cheung and Friederike Schmid
Theoretische Physik, Universit8ielefeld, D-33615 Bielefeld, Germany

(Received 9 January 2004; accepted 19 February)2004

A system of soft ellipsoid molecules confined between two planar walls is studied using classical
density-functional theory. Both the isotropic and nematic phases are considered. The excess free
energy is evaluated using two differeAbsaze and the intermolecular interaction is incorporated
using two different direct correlation functiof®CF’s). The first is a numerical DCF obtained from
simulations of bulk soft ellipsoid fluids and the second is taken from the Parsons—Lee theory. In
both the isotropic and nematic phases the numerical DCF gives density and order parameter profiles
in reasonable agreement with simulation. The Parsons—Lee DCF also gives reasonable agreement in
the isotropic phase but poor agreement in the nematic phase200@ American Institute of
Physics. [DOI: 10.1063/1.1703522

I. INTRODUCTION where V(r5,U1,U,) is the intermolecular potential and

The behavi f fluid ¢ d interf h =1/kgT is the inverse temperature,, andu, are the inter-
€ behavior of iluias near surfaces and Iintertaces 3folecular vector and the orientation vector of molecule 1,

attracted great interest in .recent years. The presence of r@spectively. For a hard potential, for which DFT calcula-
_surface brea_ks the_transla_monal symmetry of the ﬂu'd'_le?‘dfions have mostly been limited to, the integral of the Mayer
ing to behavior radically different to that in the bulk. This is function gives the excluded volume between two particles.

particularly true for liquid crystals.Many applications for However, recently the DCF has been calculated for the
liquid crystalline materials rely on the ability to manipulate

. ) oft ellipsoid model for a number of state points in both the
the preferred alignment through the action of an externaﬁemaﬁC and isotropic phag&:2*It has been shown to repro-

field. This pehavior is strongly inﬂgenced by coupling be'duce the bulk properties of the nematic fluid such as the
tween the liquid crystal and bounding surfaces. elastic constant& Thus it is hoped that this may provide a

dAS m??{ bgdexpect(?d from above, thefre haVE bee_n man¥ood description of the structure of the inhomogeneous fluid.
studies of liquid-crystal systems near surfaces. Experiment In this paper we consider one of the simplest situations:

Swd'elff havg been peﬁrforme? using 'method%/su%hl\?l\sﬂéaannlgqluid of ellipsoidal molecules interacting with a structure-
tunnefling microscopy,atom force microscopyan *less wall. Both isotropic and nematic phases are considered.

among others. There have also been simulation studies, Using,q paper is arranged as follows: In the next two sections the

) 7 : .
Iattlc_e mod_elé, hard? or soft single site modefsand a_few theory(Sec. I) and computational method are outlingkc.
studies using atomistic modelst has also been studied by lI1). The results are then given in Sec. IV and a short sum-

th(_a all commonly u_sed theoretical methods in quuid—crystalrnary follows in Sec. V.
science. Both elastic theory and Landau—de Gefriesory
have been applied to this. However, the former makes some

assumptionge.g., slow director variationthat are invalid !l THEORY

near a solid substrate, while the latter introduces phenomeng;. pensity-functional theory

logical parameters that are not easily related to microscopic o i
properties. Last, there have been several studies using For a system of uniaxial molecules the grand potential

density-functional theoryDFT) 5711130 integral equation ~Ccan e written as

methods."*° n _ _ BOLp(r,u)]=BFidp(r, W]+ BFefp(r,u)]
In this paper we study a liquid-crystal fluid near a solid

substrate using DF¥1’DFT in principle provides a route to +BJ drduVo(r,u) p(r,u)

the thermodynamic properties of a fluid from knowledge of et '

its microscopic(moleculaj properties. The intermolecular

potential is incorporated through the excess free-energy —,B,u,f drdup(r,u), 2

functional. While the exact form of this is unknown a num-

ber of approximations to this are commonly used, such awherep(r,u) is the orientationally dependent single-particle

Onsager theory and Parsons—Lee thedf¥? density distributionVe(r,u) is the external potential, and
Previous DFT calculations for liquid-crystalline systemsis the chemical potentiak g p(r,u)] and Fgfp(r,u)] are

have been hindered as the exact direct correlation functiothe ideal and excess free energies, respectively. The ideal

(DCF) is unknown. Commonly, this is approximated by the free energy is given by

Mayer f function,

(a1t ) = X — BV 13,1 )} 1, © ﬁFid[mr.u)]:f drdup(r,u)[In\°p(r,u)]-1], (3
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where\ is the thermal de Broglie wavelength. The excessto be the Mayef function. This corresponds to truncating the
free energy is in general unknown. Here we use Amsaze  virial expansion at the second term, and thus is valid only for
for Folp(r,u)]. In the firstFg[p(r,u)] is in the spirit of  low densities and large elongations.
Onsager theory/18 In this paper, two different forms of the DCF are consid-
ered. The first is a numerical DCF calculated from simula-
BE[p(r.u)]=— %f dr 1 duydr ,dUunC(r 10, Uy, Us) tions of soft ellipsoid molecule¥**In principle this should -
be an exact representation of the interactions within the fluid.
X p(I,Up)p(Fly), 4) “The second form is taken from Parsons—Lee théort _
This corresponds to a resummed virial series truncated, as in
wherec(r,,u;,U,) is the direct correlation function. Onsager theory, at the second-order term. Thus the Parsons—
In the secondF, p(r,u)] is taken to be a density ex- Lee DCF is the Mayef function multiplied be a density-
pansion around the homogenous fluid with dengigfu) dependent prefactor,

12,411,442 (] 7])2 12,41,Y2/,

ﬂFex[P(r,U)]:_f drydusc™(ug)[p(ry,up) = po(u)]
where n=puv, IS the packing fraction. To calculate the
Mayer function the intermolecular potential is required. For

1
2 f drydudroduac(ryz, Uy, Up) the soft ellipsoids considered in this paper, the potential is

given by
X{p(ry,us) —po(uy)}
oo 12
X{p(ry,Up) —po(Uz)}, (5 V(rqp,Uq,Up) =4 =

{p(r2,Uz) —po(Uy)} (rip,ug,Up) F 10— 0 (F12,Uz,Up) + 07
where po(u) is the density for the bulk, homogenous fluid 6
andcM)(u) is the first-order direct correlation function. This _( _ 70 , (10)
can be identified with the excess chemical potentig{, rij—o(f12,Uz,Ux) + og
— 25
__C(l))-. _ _ _ where

For fixed external and chemical potentials, the equilib-
rium single-particle density is that which minimizes the . ol X (Fij - Ui+ Fij-up)?
grand potential. This is a solution to the Euler—Lagrange o(fij Ui, Uj) = oo 2 1+ xu;- U
equation, . R B
N (rij'ui_rij'uj)2 1/2 (11)
S0Lp(rw] _ © 1= XU U ’
1) ' .
p(r,w) and y=(x?—1)/(x*+1), wherex is molecular length-to-
S{BF ol p(r,u)]} breadth ratio, equal to 3 for the system considered here.

IN{\3p(r,u)}—Bu(u)+BV(r,u)+ WZO- In both theories the DCF is taken to be that of the bulk,

(7) homogeneous fluidi.e., the density in the prefactor in Eq.

(9) is fixed to be the bulk densityExtension of Parsons—Lee

The chemical potential is found from the Euler— theory to inhomogeneous densitié®., a prefactor that de-
Lagrange equation of the bulk, homogeneous fluid, i.e., subpends on the spatially varying densitg possible although

stituting p(r,u) = po(u) into Eq. (7) for both Ansazefor the  nontriviaP®~?®and application of this is beyond the scope of
excess free energy. this paper.

The external potential is given by a repulsive Lennard-
Jones potential,

1\ 1 \® lIl. METHOD
Y\zv05 “lz7os |*h
Vod2)=1 ' ' 8 Following Allen®"2% angular-dependent functions are
& if z<2'6-0.25, expended in spherical harmonics. The single-particle density
0, otherwise. and its logarithm become
This potential acts upon the molecular centres, thus giving ru)= NY* (U 12
rise to homeotropi¢norma) alignment at the surface. p(r.u) % Pim(1)Yim(U) 12
and
B. Direct correlation function In{)\3p(r,u)}=§q Dim(1)Yim(U). (13)

The direct correlation functioDCF), c(rj; ,u;,u;), is
the central quantity in many theories of liquids and liquid The use of the complex conjugate in E@l2) ensures
crystals. For liquid-crystalline systems the simplest approxip(r,u)In{\3p(r,u)} == 1oim(r)Pim(r).
mation to the DCF is that of Onsager where the DCF is taken  Similarly, the direct correlation function is expanded as
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For a homogeneous fluid confined between two struc-

C(r12’u1’U2):,l |, |% - Ciymy1omyim(T'12) tureless walls with the wall normal in the direction the
. density and its logarithm are functions obnly.
XY 1m, (UD) Y1 m, (U2) Yim(F12). (14 For the firstAnsatzto the excess free energy, substituting

In the above sums, 9I<l,, and —l<m<l|. Symmetry Egs.(12), (13), and(14) into the grand potential Eq2) and
dictates tham; + m,+m=0 and that,, |,, andl are even. Performing angular and andy integrations gives

Q , L L L
WZJ dzY, pim(2){Pim(2) — Va7 0} + >, BJ dZVIm(Z)pIm(Z)_\/47T,BMJ dzpim(2)
0 I,m I,m 0 0

1L L
_I Izm EJO leJO d22C|1|2m(|Zl_ZZl)pllm(Zl)plzﬁ(Zz). (15)
1:'2»

The V,,(z) are the components of the spherical harmonics % z
expansion of the external potential [V(z,u) Clllzm(z):Z V(2|+1)7TL drrcllmlzmIO(r)Pl(F)1
=2 mVim(2)Yim(u)]. For the potential given above, the (16)
only nonzero term i&/oo(2) = V47 Vex(2). whereP,(x) is thelth Legendre polynomial.

Ci,1,m(2) is the integral of the DCF over and ¢ for a Similarly the grand potential for the secoddhsatzbe-
fixed z, given by comes

QO , L L L
B [pA(z U)]:f dzY, pim{Pim(2)— VATl + > ,ef dzVin(2) pim(2) — 2, Bmmf dzpim(2)
I,m 0 Im 0

0 I,m

L o
_ lEm fo dzlf deCIlIZm(|Zl_Zzl)p|lm(21)[p|25(22)_2p|0m]
112 —

1
2
_E 2 Ldz ) dz,C 0 _ .
2|1,|2,m 0 1 . 2 |1|2mp|1mplzm,

where =8, andf, are the spherical harmonics coeffi-
cients of the logarithm of the bulk orientational distribution pO(Z):f dup(z,u)=Ampod(2).
function. the that hergx includes contributions from the Similarly the second rank order parameter profil¢z) can
linear term in the excess free energy EB) and thus de- g calculated frof?
pends on orientation.
The equilibrium particle densities are found by tabulat- P,(2)= w,
ing the grand potential on a regular grid and then numeri- Jdup(z,u)
cally minimizing Eq. (15 or Eq. (17) with respect to the 1 pu2) (19
P1im(2). This numerical minimization is performed using the P2(2)=— .
conjugate gradients methddThe calculations were taken to V5 Pod2)
be converged when the fractional change in energy between
iterations was less than 0.001(i.e., Epew— Eoiq IV. RESULTS
<0.00E,., . Spatial integrals were evaluated using the tra-
pezium rule with a grid spacing of 0.04, while angular inte-A. Density and order parameter profiles
grations were performed using Gauss—Legendre quadrature
with 800—6400 points. 1. Isotropic phase
Once the equilibrium orientationally dependent density  First we present results for calculations performed in the
p(z,u) is known, the bulk density can be calculated by inte-isotropic phase, witp* = 0.24 andT* =0.5. Shown in Fig. 1
gration over the angular variables, i.e., are the density and order-parameter profiles obtained from

(18
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FIG. 2. (a) Density profiles for isotropic fluid withp* =0.24 and T*
FIG. 1. (a) Density profiles for isotropic fluid withp* =0.24 andT* =0.5. The solid line is the simulation data, the dashed line is data obtained

=0.5. The solid line is the simulation data, the dashed line shows the datffiom DFT calculations using Eq4) and the Parsons—Lee DCF, and the
obtained from DFT calculations using E@) and the numerical DCF, and dotted line shows the density profile obtained from DFT calculations using
the dotted line shows the data obtained from DFT calculations usingEq. Ed.(5) and the Parsons—Lee DAF) Order-parameter profiles for isotropic
and the numerical DCKb) Order-parameter profiles for isotropic fluid with ~ fluid with p* =0.24 andT* =0.5. Same symbols as {@).

p*=0.24 andT* =0.5. Same symbols as {@).

DFT calculations. Shown for comparison are profiles foundfound from simulation has a minimum at about the same
from molecular-dynamics simulations of a confined systendistance, although in this case the order parameter remains
of soft ellipsoids. positive. Another maximum is present at abaut3.3 in the

As can be seen from Fig(d) the density profiles found simulation data. This is also present in the profiles obtained
from DFT calculations using Eq$4) and (5) are virtually ~ from DFT calculations, although of much smaller magnitude.
indistinguishable. The DFT profiles share the same gross fe@oth profiles then rapidly decay to a constant value close to
tures as those obtained from simulation. There is a stron@ indicating isotropic ordering in the bulk of the cell.
maximum at about=0.68, followed by a minimum at about Shown in Fig. 2 are the density and order-parameter pro-
z=1.44. There is also a weak maximum at abp&t3.4 in  files obtained from DFT calculations using the Parson—-Lee
the DFT profiles andz=3 in the simulation data. Both the DCF. As for those obtained using the numerical DCF, the
DFT and simulation profiles rapidly tend towards the bulkdensity profiledFig. 2(a)] using Egs.(4) and (5) are essen-
density. tially identical and in good agreement with the profile ob-

The most obvious difference between the DFT and simutained from simulation. Again a major discrepancy between
lation results is the height of the first peak. In the profilethe DFT and simulation profiles is the height of the first
obtained from the DFT calculations the height of the firstpeak. In this case, however, the peak height is underesti-
peak is about 2.02, while in the simulation data it is approxi-mated by the DFT calculations, 1.23 compared to 1.61 for
mately 1.61. the simulation profile.

Shown in Fig. 1b) are the order-parameter profiles ob- The order-parameter profiles are shown in Fig. 2. As can
tained from DFT calculations and simulation. As can be seefbe seen, the first peak in the order-parameter profiles ob-
the agreement between the two profiles here is not as good &sned from DFT calculations is much smaller than in the
for the density. Both the DFT and simulation data have peaksimulation profile and those found from DFT calculations
at aboutz=0.64. This peak arises due to the effect of theusing the numerical DCF. For molecules with length-to-
surface on the ordering of the molecules. The heights ofvidth ratio of 3, Parsons—Lee theory predicts an isotropic—
these peaks are both abgut=0.64. This initial peak is then nematic transition at aboyt=0.322! whereas for simulation
followed by a decrease in the order parameter. the transition is ap=0.284. Thus for Parsons—Lee theory it

In the DFT calculations the order parameter then beis further from the nematic phase, and hence at lower order,
comes negative with a minimum at abast 2.4. The profile  than in simulation.
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FIG. 3. (a) Density profiles for nematic fluid with* =0.30 andT* =0.5. FIG. 4. (a) Density profiles for nematic fluid. The solid line is the simulation
The solid line is the simulation data, the dashed line is the data obtaineflata (* =0.30 andT* =0.5), the dashed line is data obtained from DFT
from DFT calculations using Eq4) and numerical DCF, and the dotted line calculations using Eq4) and Parsons-Lee DCPp{ =0.35 andT* =0.5),
shows the data obtained from DFT calculations obtained from DFT calcu&nd the dotted line shows the data obtained from DFT calculations using Eq.
lations using Eq(5) and the numerical DCRb) Order-parameter profiles (5 and Parsons—Lee DClp{=0.35 andT*0.5). (b) Order-parameter pro-

for nematic fluid withp* =0.30 andT* =0.5. Same symbols as {@). files for nematic fluid. Same symbols as(a.

2. Nematic phase profile. These secondary peaks are also stronger in the DFT

Shown in Fig. 3 are the density and order-parameter proprofile calculated using Eq4) than those in the profile cal-
files for the nematic phase{=0.30 andT* =0.5) calcu- culated using Eq(5). These peaks indicate surface induced
lated using DFT calculations and Monte Carlo simulation. Inlayering! This has been observed in by x-ray reflectivity
the simulations, the cell size was adjusted so that the averageeasurements, both at the nematic—solid interface as studied
density in the cell bulk was 0.30 to aid comparison betweerhere and at the free nematic interface.
simulation and theory. As can be seen the profiles obtained The second rank order parameter profiles are shown in
from DFT calculations using Eqg4) and (5) are in better Fig. 3(b). Again these show a strong initial peak at approxi-
agreement with each other than with the simulation profilesmatelyz=0.6. This is then follow by a series of peaks before

The density profiles are shown Fig@B As in the iso- decaying to a bulk values as for the density profiles. These
tropic case, there is an initial peak in the density profile atpeaks are at approximately the same positions as the peaks in
aboutz=0.6. There are then further peaks. In the DFT pro-the density profiles. As for the density profile the secondary
files these subsequent peaks arezat3.5, z=6.3, andz  peaks are stronger than those in the simulation profile. In the
=9.4. In the simulation profile, these arezt3.2,z=5.6, center of the cell the DFT order parameters reach constant
andz="7.9. A similar difference has been seen in comparisorvalues. For Eq(4) the order parameter in the center of the
between DFT calculations and simulations for simplecell is 0.65, whereas for Eq5) p,(z) =0.69. These values
fluids 3132 This was explained due to the imposition of ho- are close to the bulk of 0.69. The order parameter in the
mogeneity in the transversg andy) directions in the theo- center of the cell from simulation is 0.74, higher than the
retical calculations? bulk value.

Aside from the positions of these secondary peaks, the One major difference between the DFT and simulation
other noticeable difference between the DFT and simulatioprofiles is the decay of the initial peak. In the DFT profile
profiles are in the heights of these peaks. As in the isotropithere is a rapid decay from the first peak that is not seen in
case the height of the initial peak is overestimated comparethe simulation profile. This can also be seen, albeit not as
to simulation. The initial peak in the DFT calculations has adramatically, in the order-parameter profiles for the isotropic
height of 3.9, while in the simulation profile its height is 2.9. fluid (Figs. 1 and 2
In contrast to the isotropic phase, the secondary peaks in the Shown in Fig. 4 are the density and order-parameter pro-
DFT profile are more noticeable than those in the simulatiorfiles calculated using the Parsons—Lee DCF and those from
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simulation. For this model, Parsons—Lee theory predicts that
a system withp* =0.30 is isotropi¢! these calculations
were performed with a higher bulk density*(=0.35).
While this difference makes detailed comparison impossible,
it is small enough for qualitative comparison.

As can be seen, the density and order-parameter profiles
calculated using Eq$4) and(5) are essentially identical and
are similar to the profiles calculated in the isotropic phase
using the Parsons—Lee DCF. This can be understood, as the
Parsons—Lee DCF is proportional to the Mayer function at
all densities, so aside from a constant the Parsons—Lee DCF
is the same in both the isotropic and nematic phases. This
leads to a lack of structure in the nematic density and order- 0 S
parameter profiles compared to those from simulation and
DCF calculations using the numerical DCF.

B. Variable cell width

In this section, the effect of varying the width of the cell
is examined. A fluid confined between two planar walls is
often used in the evaluation of the depletion force between

; ; 4
two colloidal partlclesl. Here the surface free energy, FIG. 5. (a) Variation of surface free energy with cell width calculated using

given by the excessover bulk grand potentia| per unit the numerical DCF. The solid line with circles shows the energy of the
areal” isotropic fluid calculated using E@4), the dashed line with circles shows
' the energy of the isotropic fluid calculated using E5), the solid line with
squares shows the energy of the nematic fluid calculated usin@tE@nd
the dashed line with squares shows the energy of the nematic fluid calcu-
lated using Eq(5). (b) Variation of the surface free energy with cell width
calculated using the Parsons-Lee DCF. The solid line with circles shows the
. . energy of the isotropic fluid calculated using E4), the dashed line with
is calculated for cell widths from 4 to 40 circles shows the energy of the isotropic fluid calculated using(Bgthe

The surface free energy as a function of cell width issolid line with squares shows the energy of the nematic fluid calculated

shown in Fig. 5. In all cases the it reaches a constant valugsing Eq.(4), and the dashed line with squares shows the energy of the

for large cell widths(which is the surface tensiprFor large ~ nematic fluid calculated using E).

cell widths the walls become isolated from each other with a

Iayer of bulk fluid mter_venlng betyveen the sur_face regions ofv_ SUMMARY

fluid. At smaller cell widths there is no bulk fluid layer so the

surface layers interact directly, leading to variation in the In this paper the structure of a fluid of soft ellipsoids

surface free energy with cell width. This behavior is gener-near a soft wall is determined using density-functional theory

ally oscillatory where the distance between peaks is of thealculations. The calculated density and order parameters

order of the molecular lengt{2—30). have been compared to simulation results for the same sys-
Shown in Fig. %a) is the surface free energy as a func- tem. Within the DFT calculations the excess free energy was

tion of cell width calculated using the numerical DCF. As obtained using both a numerical direct correlation function

can be seen the surface free for the nematic fluid is of largesind a well-known approximation to the DCF. Two different

magnitude than that of the isotropic fluid and shows muchAnsaze were used for the excess free energy, giving very

stronger variation with cell width. For the isotropic fluid it similar results to each other.

reaches a constant value for cell widths greater than about There is qualitative agreement between the profiles

160. In contrast, in the nematic fluid it only approaches afound using the DFT method and those from simulation. The

constant value for cell widths greater than abou#2bhis  agreement is better in the isotropic phase, than for the nem-

results from the larger range of the DCF in the nematic phasatic. In the isotropic case, the DFT calculations give profiles

compared to in the isotropic phase. that appear to be less structured than those from simulation.
Figure 8b) shows the surface free energy as a functionThis situation is reversed in the nematic phase.

of cell width calculated using the Parsons—Lee DCF. As for  For the isotropic phase, the Parsons—Lee DCF gave pro-

the numerical DCF the surface free energy in the nematifiles similar to those from the numerical DCF. However, in

phase is of greater magnitude and shows stronger variaticthe nematic phase the Parsons—Lee DCF gave profiles that

with cell width than in the isotropic phase. In both the nem-were much less structured than those from the numerical

atic and isotropic phases the it is constantlfagreater than DCF and simulation.

about 18&. This is in contrast to the behavior of the surface  The variation in the surface free energy as a function of

tension for the numerical DCF. cell width has also been examined. For larger cell widths it is

4 10 16 22 28 34 40

_ BQlp(z,u)]— BQpo(u)]
By= ,

oA (20
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a constant, whereas for small cell widths it reflects strong®p. G. de Gennes and J. P. Prdaysics of Liquid Crystajs2nd edition,

oscillatory interactions between the two surfaces. (Clarendon, Oxford, 1995

. . . . .11 .
In summary, the simple density functionals used in this A'gg's Somoza, L. Mederos, and D. E. Sullivan, Phys. Rew4: 5017

paper, which are based on a second_—order c_iensny.expans_l 1. C. Teixeira, Phys. Rev. B5, 2876(1997.

of the excess free energy, already give profiles which are i, chrzanowska, P. I. C. Teixeira, H. Ehrentraut, and D. J. Cleaver, J.
gualitative agreement with simulations. We still observe Phys.: Condens. Mattéi3, 4715(2003).

quantitative deviations, especially in the nematic phase.'Y. Mao, M. E. Cates, and H. N. W. Lekkerkerker, J. Chem. Pi1ys,

T : ; L 3721(1997).
Therefore it will be interesting to compare these results WlthlSY Mao, P. Bladon, H. N. W, Lekkerkerker, and M. E. Cates, Mol. Phys.

profiles obtained from more sophisticated density function- g, 151 (1997

als, e.g., the Somoza—Tarazona functiGhat the recently 18R Evans, Adv. Phys28, 143(1979.

proposed modified Rosenfield functiorfal. 173, P. Hansen and I. R. McDonal@iheory of Simple Liquids2nd edition
(Academic, New York 1986

181, Onsager, Ann. N.Y. Acad. Sck1, 627 (1949.
ACKNOWLEDGMENTS 193, D. Parsons, Phys. Rev.1®, 1225(1979.

The authors wish to thank the German Science Foundg-S--D- Lee, J. Chem. Phy87, 4972(1987).

. . : . 1S-D. Lee, J. Chem. Phy89, 7036(1988.
tion for funding. One of ugD.L.C.) is grateful to Enrique 22\, H. Phuong, G. Germano, and F. Schmid, J. Chem. P&, 7227

Velasco for helpful advice. The Monte Carlo program used (g3,

was kindly provided by Mark Wilson. 2N. H. Phoung, G. Germano, and F. Schmid, Comput. Phys. Comtddn.
350 (2002.

24N. H. Phoung and F. Schmid, J. Chem. PHk9, 1214(2003.

25M. B. Sweatman, Mol. Phy€98, 573(2000.

%A, Somoza and P. Tarazona, J. Chem. PByis517 (1989.

1B. Jerome, Rep. Prog. Phys4, 391(1992.
2J. Frommer, Angew. Chem., Int. Ed. Engll, 1298(1992.

SR. L. Wlliamson, M. Rivera, M. J. Miles, and K. D. Jandt, Proc. SPIE - M
2384 60 (1995 H. Graf and H. Loven, J. PhyS Condens. Mattét, 1435(1999

28
4G. R. Luckhurst, P. J. Le Masurier, T. Miyamoto, K. Nakamura, T. H. D. de las Heras, L. Mederos, and E. Velasco, Phys. Re§8B31709
Payne, A. Sugimara, and B. A. Timini, iroceedings of the 4th Interna- (2003.

tional Display Work-shop1997. 29M. P. Allen, J. Chem. Physl12, 5447(2000).

5P, Pasini, C. Chiccoli, and C. Zannoni, idvances in the Computer - W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. VetterlNg;
Simulations of Liquid Crystalsedited by P. Pasini and C. Zanndlu- merical Recipies(Cambridge University Press, Cambridge, England,
wer, Dordrecht, 2000 1992.

SM. P. Allen, Mol. Phys.96, 1391 (1999. 31p, Tarazona, Phys. Rev. 34, 2672(1985.

’D. Andrienko and M. P. Allen, Phys. Rev. &, 021704(2002. 32T, K. Vanderlick, L. E. Scriven, and H. T. Davis, J. Chem. P198.2422
8G. D. Wall and D. J. Cleaver, Phys. Rev.56, 4306(1997). (1989.

°D. J. Cleaver and D. J. Tildesley, Mol. Phyil, 781 (1994). 33G. Cinacchi and F. Schmid, J. Phys.: Condens. Mdi#erl2223(2002.

Downloaded 19 Apr 2013 to 130.159.57.81. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



