Investigating the feasibility of mid infrared spectroscopy for monitoring an industrial de-racemization biotransformation process
Gardner, Peter and Arnold, S.A. and Brown, F. and Carr, R H and Nordon, Alison and Harvey, Linda and McNeil, Brian (2013) Investigating the feasibility of mid infrared spectroscopy for monitoring an industrial de-racemization biotransformation process. Analytica Chimica Acta, 779. pp. 50-55. ISSN 0003-2670 (https://doi.org/10.1016/j.aca.2013.04.002)
Full text not available in this repository.Request a copyAbstract
Biotransformation processes have become industrially important in recent years as routes to the manufacture of high value chemical intermediates. However, measurements of key process features and analyte concentrations during these processes are still typically carried out using off-line analysis methods. Vibrational spectroscopic techniques have been extensively utilised for the monitoring and control of a variety of industrial processes. Despite the techniques success with a range of challenging biological matrices, including fermentation and cell culture systems, application of this approach to biotransformation systems has been limited. In the present study the potential of mid infrared spectroscopy to monitor an industrial biotransformation process has been investigated. This process presents a number of difficulties due to the optically challenging sample media, close structural similarities and stoichiometric relationship between the key analytes of interest. A PLS model based on the mid infrared spectra obtained during three replicates of the biotransformation process was constructed. In order to ensure that co-linearity within the system had been adequately addressed the spectral contributors to the model were examined. External validation of the constructed model was achieved by challenging the model with two previously unseen replicates of the process. The constructed model was able to predict the concentrations of two key analytes in various samples from these unseen replicates without the requirement for any time consuming sample pre-treatment stages, thus demonstrating the feasibility of near real-time mid infrared monitoring of an industrial biotransformation process.
-
-
Item type: Article ID code: 43513 Dates: DateEvent24 May 2013Published1 April 2013Published OnlineSubjects: Science > Chemistry Department: Faculty of Science > Pure and Applied Chemistry
Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences
Technology and Innovation Centre > Continuous Manufacturing and Crystallisation (CMAC)Depositing user: Pure Administrator Date deposited: 17 Apr 2013 14:19 Last modified: 08 Apr 2024 20:26 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/43513