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ABSTRACT

This report describes the Fluent User Defined Function WindCube_comp_sim used to
interrogate FLUENT a Fluent data set by simulating the operation of a LeoSphere Windcube
LiDAR. The user defined function is contained in the program lidar.c (version 1.06) which has
been written in the C programming language.

This report contains a listing of the user defined function, describes its method of operation
and presents a validation of the analysis process.

The report also includes a description of the output data file formats.
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2 Introduction

Whilst the CFD simulation of the flows, over the many different platforms which are used as
mounts for the various LiDAR and SoDARs employed by NORSEWInD, can give an estimation
of the distortion of the flow field on point measurement quite readily. The effect of the flow
distortion on the output of the LiDARs and SoDARs requires a more complex analysis. This
analysis requires the CFD data to be interrogated as if a LIDAR or SODAR was actually
present in the simulation.

This report describes the Fluent User Defined Function (UDF) Windcube_full_sim which can
be used to interrogate FLUENT data and simulate the operation of a Leosphere Windcube
LiDAR.

To simulate the operation of a Windcube LiDAR mounted on a platform the results of a CFD
simulation of the flow are interrogated by a User Defined Function, Windcube_full _sim. The
UDF interrogates the fluent data set at the measurement points of the Windcube LiDAR,
rotates the vector data from the CFD coordinate system into the LiDAR coordinate system
and calculates the Velocity in the line of sight of the laser beam (VloS). From the Vlos data
the UDF calculates the velocity vector data that would be returned by the LiDAR at the
interrogation height. The UDF also returns the velocity vector data at the point directly
above the LiDAR at the interrogation height.

To assess the effect of the flow distortion on the measurements made by the LiDAR and to
allow correction of the data should it be required a range of correction factors are
determined from the LiDAR and point measurements.

This report contains a listing of the UDF and describes its method of operation.

The report also includes a description of the correction factors and the output data file
formats.

A verification of the procedure is presented based on the data from the simulation of the
Horns Rev 2 platform.
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3 Analysis Technique
3.1 Windcube method of operation

The Leosphere Windcube measures the component of the velocity vector in the direction of
a laser beam at four points at a known height above the system, figure 1.

Figure 1: Measurement points above wind cube LiDAR and coordinate system
The unit vector in the direction of the laser beam is given by equation 1.
N(xyz) = (Sin¢sing, sindcosp, cosd) equation 1

The projection of the wind vector on to the unit vector calculated by the dot product of the
velocity vector and the unit vector gives the component of the wind velocity in the direction
of the laser beam, Vo, equation 2.

Vips = usindsin@ + vsin¢cose, +w cos equation 2

Harris (2009) also gives Vios but in the Cartesian coordinate system, equation 3, where x, y
and z are the Cartesian coordinates of the measurement point from the laser.

ux+vy+wz

—_— equation 3
Vx2+y2+22 a

The wind cube LiDAR takes the four line of site velocities at the four ordinal points of a

Vies =

circular scan, ¢=0°,90°,180°,270 ° where the angle, ¢, is taken positive clockwise from the y
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axis. ¢ is the cone angle of the Windcube, 30°, if the line of sight velocity at these four points
are taken as s, S1, S» and s3 respectively then from equations 4 to 7

So =vsin® + wcos® equation 4
Sy =usin® + wcos @ equation 5
Sy = —vsin@+wcos® equation 6
S3 = —usin® + wcos @ equation 7

taking the V|os from diametrically opposite sides of the scan and summing

So+ S, =vsin@+wcos@® —vsin@ + wsin@ equation 8
Sog+ S, =2wcos equation 9
So+S2
- equation 10
2cos® g

using the same process the other components of the wind vector can be determined from
the line of sight velocity.

p = 202 tion 11
= —=e equation
2sin® 9
Sl+53 .
u=—— equation 12
2cos®

Utilising a CFD simulation of the flow over a platform and applying the technique discussed
above it is possible to simulate the measurement that would be made by a Windcube LiDAR.
If the coordinate systems of the LiDAR and the CFD simulation were exactly the same then
the analysis would be straight forward. However, various reasons this is not always possible
and therefore the measurement positions of the LiDAR need to be transformed into the
coordinate system of the simulation and the wind vector data from the CFD simulation at
these points need to be transformed into the coordinate system of the LiDAR.

3.2 Transformation Matrix

To simplify the process and to make the UDF that performs the analysis as flexible as
possible a single transformation matrix (TM) was used. The TM performs a rotation about
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the Z axis in a right handed coordinate system which creates an anticlockwise rotation for a
positive angle. The TM is shown in equation 13

X2 cosf@ —sinf O0][*1
Y2 =|sin@ cos@ 0]]|Y1] equation13
Z) 0 0 11171

3.3 Analysis process

The analysis process described here uses the Horns Rev 2 platform as an example but,
providing that the location of a LiDAR on a platform is known and the angles B and y are
defined, then the UDF can be used on any installation of a Windcube.

Initially the location of the LiDAR in the CFD coordinate system and its orientation relative to
the coordinate system y are required as shown in figure 2. The LiDAR will usually be aligned
with true north so this is the angle between the platform and true north.

\\ﬂ_)i Yi

LY
LY

Ye

Figure 2: CFD and LiDAR coordinate systems
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To simulate the wind approaching the platform at different angles several simulations are
run with the platform rotated through an angle, B, relative to the CFD axis system. This
angle is also required to be known, figure 3.

Figure 3: Rotation of platform relative to wind vector

For the given interrogation height the four measurement locations sq to s3 are calculated
relative to the CFD coordinate system origin, figure 4.

- [ ]
S3

Figure 4: LiDAR measurement locations in CFD coordinate system
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The measurement locations are rotated to align with the LiDAR coordinate system, figure 5

/ \ So
\J S3 ;(c

o

S,

Figure 5: LIDAR measurement locations rotated into LiDAR coordinate system

The measurement locations are then translated from the CFD coordinate system into the
LiDAR coordinate system, figure 6.

Figure 6; measurement points in LiDAR coordinate system
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The CFD data set is interrogated at points sg to s3 to find the components of the velocity
vector u, v, w at each point. The velocity vector data are in the CFD coordinate system and
therefore need to be rotated into the LiDAR coordinate system. If the CFD vector data is

defined X positive in the upstream direction then an initial rotation of 180° is required take
the vector data from then CFD to LiDAR coordinate system, figure 7.

Free stream

U

Figure 7, 180 degree rotation of velocity to LiDAR coordinate system

The velocity data then needs to be rotated to take into account any rotation of the platform
relative to the wind vector, figure 8.

Figure 8: Velocity vector rotation to LiDAR Coordinate system for rotated platform
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Note that in figure 8 that the rotation of the free stream vector relative to the LiDAR is
clockwise and therefore negative in the right hand coordinate system used in the rotation
matrix shown in equation 13.

If the LiDAR is not aligned with north there is a software setting that can be applied that will
rotate the measured velocity vector to a coordinate system aligned with north. If this angle
is defined as €, shown in figure 9, then the measured velocity vector is rotated by an angle —
€ using the rotation matrix defined in equation

Figure 9: Software velocity vector rotation to north Coordinate system.

Applying the rotations described above to the CFD vector data produces the u, vand w
components in the LiDAR coordinate system. From equations 4 to7 the line of sight
velocities so to s3 may then be determined and the velocity vector that would be returned
from the LiDAR calculated.

3.4 Correction factors

If it is taken that the CFD data were simulated in a free stream of known magnitude and
direction aligned then any change in the magnitude of any component in the u, vand w
directions, and therefore a change in the azimuth angle 6 of the flow, must be due to
interference caused by the presence of the platform. Using the CFD data it is possible
estimate the magnitude of the interference and therefore derive a correction factor to
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compensate for the effect of the interference. The process by which these correction factors
were determined is described below.

To correct the u component of the LiDAR data to point data rearranging equation 14 gives
the correction factor in equation 15. The same process can be applied for correction factors
for the vand w components

Upoint = Cf Dy * Wigar equation 14
Upoi )
cfpu = —up,omt equation 15
lidar

To correct the u and v LiDAR data to the undisturbed free stream values requires equations
16 and 17 which, when rearranged give the correction factors for these components in
equations 18 and 19

Ufree stream = cf fu * Widar equation 16
VUfree stream — cf fy * Viigar equation 17
u t .
ffu= freestream equation 18
Ulidar
v t .
cff, = freestream equation 19
Viidar

Because the w component of the free stream will always be zero in the simulation a slightly
different correction factor is derived. The correction factor to calculate the w component of
the free stream velocity from the LiDAR data is given by equation 20

Weree stream = Wiidar + cffw Ufree stream equation 20

In the simulations the w component is zero hence the correction factor is given by equation
21

wyi .
cff, =——rdar equation 21
Ufreestream

The correction addends for the azimuth angle are calculated by equations 22 and 23

epoint = Oligar + ¢fPo equation 22

Hfree stream = Oligar + CffG equation 23
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4 UDF verification

In order to verify the UDF two calculations were carried out for a data point above the
Horns Rev2 platform. The first calculation was carried out by hand and may be found in
appendix A. The second calculation was carried out by the UDF. The results of the two

calculations may be seen in table 1.

UDF Hand Calc

m/s m/s
So -6.75 -6.75
S1 1.94 1.94
S, 8.31 8.40
S3 -0.31 -0.32
U 2.25 2.26
\Y -15.06 -15.15
w 0.90 0.93
e 81.484

Table 1: Comparison between hand calculation and UDF
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5 Program Listing

The following pages contain a listing of the code for the LiDAR simulation UDF.

#include "point_in_cell_h"
#include "math.h"

#include "string.h"
#include "stdlib.h"

/* note that phi is the cone angle */
/* note psi is the asimuth angle */

DEFINE_ON_DEMAND(windcube_comp_sim)
{

void z_rotation(float *ptr, float theta);

int yorn, zone;

float xloc, yloc, zloc, height, dh, h, nh, ver, gamma, beta, cfd_psi, epsilon;
float dumnuml, dumnum2, dumnum3, dumnum4;

float x, y, z, hmeas[50], s[4]1[3], U[3].,U_magl, U magp, UI[3].,Up[3];

float phi_deg=30, phi_rad, lid rig _deg, rig vel deg, theta rad, thp, thl, nth_sth deg;
float cff U, cff u, cffF v, cff w, cfFf th, cfp U, cfp u, cfp v, cfp_w, cfp_th;
float u_ref, v_ref, w_ref, U _mag_ref;

float npoints=50;

float pi=3.14159;

float psi_deg, psi_inc, psi_rad;

float ploc[50][3], Vlos[4], asangle[50];

int i,j,nj,b,result, np;

char dummy;

char *header={""h U mag lidar U_lidar V_lidar W_lidar Th_lidar U _mag point U_point V_point W_point th_point cff u
cff v cff . w cff U cff_th cfp u cfp v cfp w cfp_U cfp_th \n"};

char stringl[40];
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/*define the free stream reference condition from the CFD boundary condition */
float U_ref[3]={-15.0,0,0};

FILE *exp_file_ptr;
FILE *inp_file_ptr;

Domain *d;
Thread *ct;
cell _t c;
real point[3];
ver=1.06;
Message(""WINDCUBE full simulation program version %.2f started \n\n", ver);
U mag_ref=sqrt(U_ref[0]*U_ref[0]+U_ref[1]*U_ref[1]+U_ref[2]*U_ref[2]);
/* open a file to read data */
Message(‘'opening settings.dat \n'");
inp_file_ptr=fopen(‘settings.dat","r');
Message(‘'reading settings.dat \n'");
/* read the data in from the settings file */
if (inp_file ptr I=NULL)
{
fscanf(inp_Ffile ptr, "%s %s %s %s %s %s %s %s \n', &dummy, &dummy, &dummy, &dummy, &dummy, &dummy,
&dummy, &dummy);
Message(*'read header \n'");
fscanf(inp_file_ptr, "%d %d %f %f %f %f %F %F \n", &zone, &yorn, &height, &nh, &gamma, &beta, &cfd_psi,

&epsilon);
Message(''read data \n'");
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}

else

{

Message('no file name \n');

}
np=betas30.0;
for (i=0;i<np; i++)

{
fscanf(inp_Ffile ptr, "%f %f %Ff %f \n", &dumnuml, &dumnum2, &dumnum3, &dumnum4);

}
fscanf(inp_Ffile ptr, "%f %f %F %f ', &beta, &xloc, &yloc, &zloc);
fclose(inp_Ffile_ptr);
Message("'finished reading settings.dat \n\n');
Message("'x location %6.4f \n", xloc);
Message(*'y location %6.4f \n', yloc);
Message(*'z location %6.4f \n', zloc);
Message(‘'gamma %6 .4f\n"", gamma);
Message(‘'beta %6.0F\n", beta);
Message("'psi %6.0F\n"", cfd _psi);
Message(*'epsilon %6.0f\n", epsilon);
/* open a file to write data */
b=beta;

result=sprintf(stringl, "windcube simulation %d degrees.dat",b);

Message(*'opening %s \n", stringl);



User Defined Function: WindCube_comp_sim

UoSNWO018 revision 00

exp_file_ptr=fopen(stringl, w");
/* inputs required for the fluent UDF get domain defines the entire domain and lookup_ thread get the thread
number for the specified zone in the given domain */

d = Get_Domain(l);
ct = Lookup_Thread(d, zone);

/* define the angle of the free stream realtive to the lidar */

rig_vel _deg=-1.0*(betat+gamma);

/* change software rotation because rotation os wind vector is clockwise hence negative */
nth_sth_deg=-1.0*epsilon;

/* define the angle of the lidar relative to the cfd axis system */

lid_rig_deg=beta+gamma;

/* calculate the distance between measurement heights */

Message("'\n %.2Ff heights to be calculated \n", nh);

dh=height/nh;

/* convert the lidar cone angle to degrees */

phi_rad=phi_deg*pi/180;

/* there are two types of analysis: The verbose version writes info to the screen during calculation
and the output file columns are annotated. The other just shows the number of steps on screen and just

outputs the data to file without headers */

it (yorn == 1)
{
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Message(''verbose output version %.2Ff \n', ver);
/* write a header to the file */
fputs(header,exp_file ptr) ;
/* rotate the velocity from the CFD coordinate system into the Lidar Cordinate system */
z_rotation(U_ref, cfd_psi);
/* rotate the velocity from the lidar coordinate system into the rig Cordinate system */
z_rotation(U_ref, rig_vel _deg);
/* rotate the velocity into the north-south Cordinate system */
z_rotation(U_ref, nth_sth deg);
/* for loop to calculate the velocity vector at each height where nh is the number of heights */
for (J=1; j<=nh; j++)
{

Message(‘'measurement height %d being calculated \n", j);

/* calculate the height */

h=dh*j ;

/* assign to the point array the measurement point location above the lidar in CFD coordinate */
point[0]= xloc;

point[1]= yloc;

point[2]= zloc + h;

/* find the cell in the computational domain containing the point */
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c = cell_containing_point(point, ct);
/* find the u, v and w components of the velocity vector at this point */
Up[0]=C_u(c,ct);
Up[1]1=C_V(c,ct);
Up[2]=C W(c,ct);
/* rotate the velocity from the CFD coordinate system into the Lidar Cordinate system */
z_rotation(Up, cfd_psi);
/* rotate the velocity from the lidar coordinate system into the rig Cordinate system */
z_rotation(Up, rig_vel _deg);
/* rotate the velocity to the north south coordinate system*/
z_rotation(Up, nth_sth deg);
Message("'point velocity in rig coords %4.2F %4.2F %4.2F \n", Up[0],Up[1].,Up[2]);
/* calculate the magnitude of the horizontal component */
U_magp=sqrt(Up[0]*Up[0]+Up[1]*Up[1]);
Message(*'Vel magnitude in horiz plane %4.2f \n", U_magp);
/* calculate the flow angle */
if (Up[0]>0)
{ if(Up[1]>0)
{ thp=360.0-atan(Up[1]/Up[0])*180/pi ;

3
if(Up[1]<0)
{
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thp=-atan(Up[1]/Up[0])*180/pi;

}
}
else

thp=180.0-atan(Up[1]/Up[0])*180/pi ;
}

Message(""flow azimuth angle %4.2f \n', thp);
/* for loops to simulate the windcube lidar */
/* Tirst calculates the velocity vector at the four measurement points */
psi_inc=pi/2.0;
for (i=0;i<=3; i++)
{

/* calculate the measurement points of the wind cube at the measurement height in CFD coordinate system
note that the measurement points are SO on the +ve y axis incrementing positive clockwise */

psi_rad=i*psi_inc;

/* Tirst at the origin */

point[0]= h*sin(phi_rad)*sin(psi_rad)/cos(phi_rad) ;

point[1]= h*sin(phi_rad)*cos(psi_rad)/cos(phi_rad) ;

point[2]= h;

/* rotate 180 degrees from CFD into Lidar coordinate system */

z_rotation(point, cfd_psi);

/* rotate the measurement location into the rig coordinate system */
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z_rotation(point, lid_rig_deg);

/* add the offset to translate the points to be centred on the lidar location */

point[0]= point[0]+xloc;

point[1]= point[1]+yloc;

point[2]= zloc + h;

Message(""Windcube measurement point S%ld %6.3f %6.3F %6.3F \n",i,point[0],point[1l],point[2]);

/* find the velocity vector at the point */

c = cell_containing_point(point, ct);

/* find the u, v and w components of the velocity vector at this point */

U[o]=C_u(c,ct);

u[1]=C_v(c,ct);

u[2]=C_w(c,ct);

/* rotate the velocity vector from CFD to Lidar coordinate system */

z_rotation(U, cfd _psi);

/* rotate the velocity vector from the Lidar coordinate system into the rig coordinate system */
z_rotation(U, rig_vel _deg);

Message(*'velocity at point S%ld %6.3F %6.3Ff %6.3F \n",i, U[O], U[1], U[2D);

/* put the velocity vector into the s array */

s[i][0]=V[O];
s[i][1]=VU[1];
s[il[2]=V[2];
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/* next derives the Vlos at the four s locations */
for (i=0;i<=4; i++)
{
/* calculate the angle of the measurement point from the y axis, positive clockwise */
theta_rad=i*pi/2.0;
/* calculate the Vlos at the point */
Vios[i]=s[1][0]*sin(phi_rad)*sin(theta rad)+s[i][1]*sin(phi_rad)*cos(theta_rad)+s[i][2]*cos(phi_rad);
}
Message(''Vlos at the four points are; %6.3f %6.3F %6.3F %6.3F \n"", VIos[0],VIos[1],Vlos[2],VIos[3]);
/* calcualte the velocity vector based on the four Vlos values */
UI[O]=(VIlos[1]-VIos[3])/(2*sin(phi_rad));
UI[1]=(Vlos[0]-VIos[2])/(2*sin(phi_rad));
Ul[2]=(Vlos[0]+VIos[2])/(2*cos(phi_rad));
/* apply the software rotation to the velocity vector to align with the North-South coordinate system */
z_rotation(Ul, nth_sth deg);
/* calculate the magnitude in the horizontal plane */
U _magl=sqrt(UI[O]*UITO]+UI[1]*UI[1D);
/* calculate the azimuth flow angle */
;f (UI[0]>0)

ifF(UI[1]>0)
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{ th1=360.0-atan(UI[1]/UI[0])*180/pi;
%f(UI[1]<0)
: thl=-atan(UI[1]/UI[0])*180/pi ;

glse

: th1=180.0-atan(UI[1]/UI[0])*180/pi;

/* write the lidar velocity to screen */

Message( ''Lidar velocity, magnitude and azimuth angle; %6.3F %6.3f %6.3F %6.3f %6.3Ff \n", UI[O],Ul[1], UI[2],
U _magl, thl);

/* calculate the correction factors */
/* correction to free stream */

cff_u=U_ref[0]/UI[O];

cff v=U_ref[1]/7VUI[1];

cff w=U_ref[2]/U_mag_ref-UI[2]/U_mag_ref;
cff_U=U_mag_ref/U_magl;
cff_th=(beta+tgamma+epsilon)-thl;

/* correction to point */

cfp_u=Up[0]/UI[0O];
cfp_v=Up[1]/VUI[1];
cfp_w=Up[2]/UI[2];
cfp_U=U_magp/U_magl;
cfp_th=thp-thl;

/* write the lidar and point velocity to file */
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fprintf(exp_file ptr, " %6.3F %6.3F %6.3F %6.3F %6.3F %6.3F %6.3F %6.3F %6.3F %6.3F %6.3F %6.3F %6.3F %6.3F
%6 .3F %6.3F %6.3F %6.3F %6.3F %6.3F %6.3F \n"", h, U_magl, UI[O], UI[1], UI[2], thl, U_magp, Up[0], Up[1]. Upl[2],
thp, cff u, cff v, cff w, cff U, cff _th, cfp u, cfp v, cfp w, cfp U, cfp_th);

}

else

Message(‘'abreviated output version %.2F \n', ver);

/* fprintf(exp_file_ptr, "%.2F \n",nh); */

/* Calculate the reference velocity vector */

/* rotate the velocity from the CFD coordinate system into the Lidar Cordinate system */
z_rotation(U_ref, cfd _psi);

/* rotate the velocity from the lidar coordinate system into the rig Cordinate system */
z_rotation(U_ref, rig_vel_deg);

/* rotate the velocity to the north south coordinate system*/

z_rotation(U_ref, nth_sth deg);

/* for loop to calculate the velocity vector at each height where nh is the number of heights */
for (J=1; j<=nh; j++)

{

Message(‘'measurement height %d being calculated \n", j);

/* calculate the height */
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h=dh*j ;

/* assign to the point array the measurement point location above the lidar in CFD coordinate */
point[0]= xloc;

point[1]= yloc;

point[2]= zloc + h;

/* Ffind the cell in the computational domain containing the point */

c = cell_containing_point(point, ct);

/* find the u, v and w components of the velocity vector at this point */
Up[0]=C_U(c,ct);

Up[1]1=C_V(c,ct);

Up[2]=C W(c,ct);

/* rotate the velocity from the CFD coordinate system into the Lidar Cordinate system */
z_rotation(Up, cfd_psi);

/* rotate the velocity from the lidar coordinate system into the rig Cordinate system */
z_rotation(Up, rig vel _deg);

/* rotate the velocity to the north south coordinate system*/

z_rotation(Up, nth_sth_deg);

U_magp=sqrt(Up[0]*Up[0]+Up[1]*Up[1]);

/* calculate the flow angle */

;f (Up[0]>0)

if(Up[1]>0)
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*/

{
thp=360.0-atan(Up[1]/Up[0])*180/pi ;
}
if(Up[1]<0)
{
thp=-atan(Up[1]/Up[0])*180/pi;
}

else
thp=180.0-atan(Up[1]/Up[0])*180/pi ;
}
/* for loops to simulate the windcube lidar */
/* First calculates the velocity vector at the four measurement points */
psi_inc=pi/2.0;
for (i=0;i<=3; i++)
{
/* calculate the measurement points of the wind cube at the measurement height in CFD coordinate system
/* note that the measurement points are SO on the +ve y axis incrementing positive clockwise */
psi_rad=i*psi_inc;
/* Tirst at the origin */
point[0]= h*sin(phi_rad)*sin(psi_rad)/cos(phi_rad) ;
point[1]= h*sin(phi_rad)*cos(psi_rad)/cos(phi_rad) ;
point[2]= h;

/* rotate 180 degrees from CFD into Lidar coordinate system */
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z_rotation(point, cfd psi);

/* rotate the measurement location into the rig coordinate system */
z_rotation(point, lid_rig_deg);

/* add the offset to translate the points to be centred on the lidar location */
point[0]= point[0]+xloc;

point[1]= point[1]+yloc;

point[2]= zloc + h;

/* find the velocity vector at the point */

c = cell_containing_point(point, ct);

/* find the u, v and w components of the velocity vector at this point */
upo]=C_u(c,ct);

U[1]=C _V(c,ct);

U[2]=C_w(c,ct);

/* rotate the velocity vector from CFD to Lidar coordinate system */
z_rotation(U, cfd_psi);

/* rotate the velocity vector from the Lidar coordinate system into the rig coordinate system */
z_rotation(U, rig_vel _deg);

/* put the velocity vector into the s array */

s[i][0]=V[O];
s[i][1]=VU[1];
s[il[2]=V[2];

}
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/* next derives the Vlos at the four s locations */
for (i=0;i<=4; i++)
{
theta rad=i*pi/2.0;
Vlos[i]=s[1][0]*sin(phi_rad)*sin(theta rad)+s[i][1]*sin(phi_rad)*cos(theta_rad)+s[i][2]*cos(phi_rad);
}
UI[O]=(Vlos[1]-VIos[3])/(2*sin(phi_rad));
UI[1]=(Vlos[0]-VlIos[2])/(2*sin(phi_rad));
Ul[2]=(Vlos[0]+Vlos[2])/(2*cos(phi_rad));
/* apply the software rotation to the velocity vector to align with the North-South coordinate system */
z_rotation(Ul, nth_sth deg);
U _magl=sqrt(UI[O]*UITO]+UI[1]*UI[1D);
/* calculate the flow angle */
if (UI[0]>0)
{ ;f(UI[1]>0)

th1=360.0-atan(UI[1]/UI[0])*180/pi ;

¥
if(UI[1]<0)
{
thl=-atan(UI[1]/UI[0])*180/pi;
¥
b
else
{

th1=180.0-atan(UI[1]/UI[0])*180/pi ;
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}

/* calculate the correction factors */

cff_u=U_ref[0]/UI[O];
cff_v=U_ref[1]/VUI[1];

cff w=U_ref[2]/U_mag_ref-UI[2]/U_mag_ref;
cff _U=U_mag_ref/U_magl;
cff_th=(beta+tgamma+epsilon)-thl;

cfp_u=Up[0]/UI[0O];
cfp_v=Up[1]/UI[1];
cfp_w=Up[2]/VUI[2];
cfp_U=U_magp/U_magl;
cfp_th=thp-thl;

/* write the lidar and point velocity to file */
fprintf(exp_file ptr, " %6.3F %6.3F %6.3F %6.3F %6.3F %6.3F %6.3F %6.3F %6.3F %6.3F %6.3F %6.3F %6.3F %6.3F

%6 .3F %6.3F %6.3F %6.3F %6.3F %6.3F %6.3F \n"", h, U_magl, UI[O], UI[1], Ul[2], thl, U_magp, Up[0], Up[1l]., Up[21,
thp, cff u, cff v, cff w, cff U, cfFf_th, cfp u, cfp v, cfp w, cfp U, cfp_th);

}
}

fclose(exp_File ptr);

Message(*'lidar simulation ended data written to file %s \n'", stringl);
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5.1 Functions

The subroutines (functions) called by the UDF are listed below

cxboolean outward_face(face t f, Thread *ft, cell_t c, Thread *ct)
{
Thread *ctl;
cell_t ci;
ctl = THREAD T1(ft);
iT(NULLP(ctl))return TRUE; /* face on boundary */
cl = F C1(F,ft);
if ((c==cl)&&(ct==ctl))return FALSE; /* face"s cl is c so T inward to c */
return TRUE;
}
cxboolean point_in_cell(real point[ND ND], cell_t c, Thread *ct)
{
int i;
real dist;
real p_rel[ND_ND], f cen[ND_ND], A[ND_ND];
face_t T;
Thread *ft;
cxboolean inside = TRUE;
c_face loop(c, ct, 1)

if(inside)
{
f=C_FACE(c, ct, 1);
ft=C_FACE_THREAD(c, ct, 1);
F _CENTROID(F cen,f,ft);
F AREA(A,T,fD);
NV_W(p_rel,=,point,-,f cen); /* point relative to f cen */
dist=NV_DOT(p_rel,A);
if (outward_face(f,ft,c,ct)) /* Count as inside if dist == 0.0 */
{if (dist > 0.0) inside = FALSE;}
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else
{if (dist < 0.0) inside = FALSE;}

}
}
return inside;
cell_t cell_containing _point(real point[ND _ND], Thread *ct)
cell_t c;
cell _t c in = NULL CELL;
begin_c_loop(c,ct)

if(c_in == NULL_CELL) /* if cell not found yet */
{

}

end_c_loop(c,ct)
return c_in;

if (point_in_cell(point, c, ct)) c_in = c;

void z_rotation(float *ptr, float theta)

{
float x, y, z;
float xr, yr, zr;
float pi=3.14159;

theta=theta*pi/180.0;

X=*ptr;

y=*(ptr+l);

z=*(ptr+2);
Xxr=x*cos(theta)-y*sin(theta);
yr=x*sin(theta)+y*cos(theta);

zr=z;

/* printf("'matrix after multiplication is %4.2F %4.2Ff %4.2F \n",xr, yr, zr);*/
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*ptr=xr;
*(ptr+l)=yr;
*(ptr+2)=zr;

return;
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6 Settings file format

The simulation program reads a settings.dat file which contains information used by the
UDF, table 2.

zone verbose height nh gamma beta psi epsilon
2 0 1.0 50 0.0 330.0 180.0 21.0
0] 3.9316 3.4358 0.355

30 3.9235 3.4343 0.355

60 3.929 3.9255 0.355

90 3.7933 3.9954 0.355

120 3.5076 3.9197 0.355

150 3.5076 3.9197 0.355

180 3.15 3.705 0.355

210 3.2308 3.4255 0.355

240 3.2303 3.2861 0.355

270 3.3691 3.1432 0.355

300 3.6541 3.1466 0.355

330 3.9358 3.1483 0.355

Table 2: Settings.dat file data
The first line of text describes the value below

Zone (2) the definition of the fluid zone from fluent. If unknown then needs to be
determined by selecting the fluid region from the Surface/zone surface menu and then
selecting manage. The number shown in the ID box is the zone name.

Verbose (0) if set to 0 the abbreviated version of the UDF is run, if set to 1 the verbose
version is executed.

Height (1.0) the height above the LiDAR location over which the interrogations will be
made.

Nh (50) the number of discrete steps over the range set by “height” that will be
interrogated.

Gamma (0.0) the angle in degrees between the LiDAR and rig coordinate systems
Beta (330.0) the angle between the free stream wind vector and the rig coordinate system
Psi (180) the rotation between the CFD and the LiDAR coordinate system.

Epsilon (21.0) software rotation to rotate measured wind vector into a coordinate system
aligned with north-south
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The groups of four digits below give the location of the LiDAR on the platform in the CFD
coordinate system for each of the wind directions in the order; beta, x, y, z. linear
dimensions are in metres and rotation angles are in degrees

7 Output file format

The LiDAR simulation program writes the calculated data into an output file the format of
which depends on whether the verbose or abbreviated version of the program was used.

The numerical data from the LiDAR simulation is the same for both file formats the only
difference being that the verbose version has a header line written to the file which
describes the contents of the column below, table 3.

- -
@© c
© 1.
= - o -
- - — - ] o | - - c
| ] @ (] © | c c c - o
o | © T | © | = O | 1= 1= 1= o o] > = ) - o] > = -
@© 1= T T - @ o o o o | | | | | | | | |
=] -— - - | o a| o | | Y= Y= | Y= Y ol ol ol o
| | | Il < | | | || < Y= = | = Y= = | = Y= Y= |
c D =] > = - D o] > = = o (] (&] o (] (@] (@] (&) (@]

cfp_th

table 3;output data file format

The name of the output file is defined as

windcube simulation beta degrees.dat

where beta is the angle defined in the settings file.
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