Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Neutron diffraction studies of nuclear and magnetic structures in the S=1∕2 square Heisenberg antiferromagnets (d6-5CAP)2CuX4 (X=Br and Cl)

Coomer, Fiona and Bondah-Jagalu, V and Harrison, Andrew and McIntyre, G J and Ronnow, H M and Feyerherm, R and Wand, T and Meissner, M and McMorrow, D F (2007) Neutron diffraction studies of nuclear and magnetic structures in the S=1∕2 square Heisenberg antiferromagnets (d6-5CAP)2CuX4 (X=Br and Cl). Physical Review B: Condensed Matter and Materials Physics, 75 (9). ISSN 1098-0121

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We report the neutron scattering studies of the nuclear and magnetic structures of deuterated samples of the model two-dimensional S=1∕2 Heisenberg antiferromagnets on a square lattice, (d6-5CAP)2CuCl4 and (d6-5CAP)2CuBr4 (where 5CAP is 2-amino-5-chloropyridinium). Interest in these materials stems from the fact that they have relatively weak exchange between the magnetic ions, and it is therefore possible to perturb their magnetic structures and excitations significantly in experimentally accessible magnetic fields, and thereby access new quantum disordered states. We succeeded in growing fully deuterated single crystals and determined the nuclear and magnetic structures of the bromide at 10 and 1.8 K, respectively, confirming the four-sublattice spin structure expected for systems, where both inter- and intraplane exchange interactions are antiferromagnetic. The determination of the full crystal structure of the bromide highlights the possibility that interlayer exchange may also propagate via hydrogen bonds to and through the 5CAP molecule. We also determined the critical exponents for the sublattice magnetization of the bromide and mapped out the H-T phase diagram of the chloride up to 5 T.