Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Ranking hubs and authorities using matrix functions

Benzi, Michele and Estrada, Ernesto and Klymko, Christine (2013) Ranking hubs and authorities using matrix functions. Linear Algebra and its Applications, 438. pp. 2447-2474. ISSN 0024-3795

[img]
Preview
PDF
Ranking_Hubs.pdf
Preprint

Download (752kB) | Preview

Abstract

The notions of subgraph centrality and communicability, based on the exponential of the adjacency matrix of the underlying graph, have been effectively used in the analysis of undirected networks. In this paper we propose an extension of these measures to directed networks, and we apply them to the problem of ranking hubs and authorities. The extension is achieved by bipartization, i.e., the directed network is mapped onto a bipartite undirected network with twice as many nodes in order to obtain a network with a symmetric adjacency matrix. We explicitly determine the exponential of this adjacency matrix in terms of the adjacency matrix of the original, directed network, and we give an interpretation of centrality and communicability in this new context, leading to a technique for ranking hubs and authorities. The matrix exponential method for computing hubs and authorities is compared to the well known HITS algorithm, both on small artificial examples and on more realistic real-world networks. A few other ranking algorithms are also discussed and compared with our technique. The use of Gaussian quadrature rules for calculating hub and authority scores is discussed.