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Abstract

In this paper we use the lubrication approximation to armalysee-dimensional unsteady flow
of a thin film of Newtonian fluid around a symmetric slender ingvdry patch on an inclined
planar substrate. The flow being driven by gravity and a pitesd constant shear stress at the
free surface. We obtain a novel unsteady travelling-warelaiity solution for the dry patch of
uniform thickness, in which the dry patch travels at consspeed. This solution predicts that the
dry patch has a parabolic shape which may be concave up cawiown the substrate. In all
cases investigated numerically the film thickness is founoh¢rease monotonically away from
the contact line.

Key words: travelling-wave similarity solution, dry patch, Newtonifluid, thin-film
flow.

1 INTRODUCTION

Dry patches can occur in both stationary and flowing fluid fiforsa variety of reasons,
including dry-out due to localised heating, the presencaiobubbles within the film,
inhomogeneities of the substrate, and the presence ofctamts. There is particular
interest in dry patches in films that arise in industrial ests, such as coating processes
and heat exchangers; in particular, in coating processesated regions of the substrate
may seriously degrade the quality of the final product. Asr@sequence, the formation,
stability and evolution of dry patches in fluid films are prls of enduring theoretical,
experimental and practical interest.

Pioneering work on a dry patch in a flowing fluid film driven eithoy gravity or by
a prescribed surface shear stress due to an external air #ewperformed by [2] and
extended by [9]. Two steady similarity solutions for a flowand a non-uniform slender
dry patch in a thin film draining under gravity on an inclinddnpe, namely one for the
case of weak surface tension and one for the case of strofagsuension were obtained
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by [6]. Early experiments on the shape and structure of adighpn a fluid film draining
under gravity down the outside of a vertical circular cybnavere performed by [1], and
over the last decade or so the shape and structure of a diy ipa&cfluid film draining
under gravity down an inclined plane has been extensivelyiastl both experimentally
and theoretically by Limat and his collaborators ([7], [, [4], and [5]).

In the present paper we generalise the problem of slendgratoh in a thin fluid film
driven purely by gravity studied by [10] to the problem ofreder dry patch in a fluid film
driven by gravity and a prescribed constant surface shesasst

2 PROBLEM FORMULATION

Consider a thin film of Newtonian fluid with constant dengityand constant viscosity
U on a planar substrate inclined at an anglé0 < a < 1) to the horizontal, subject to
gravitational acceleratiog and a prescribed constant shear stress its free surface
acting up or down the slope. We shall be concerned with udgtaw of such a film
around a dry patch on the substrate, as sketched in Figure 1.

Free surface
z=h(x,y,t)

Contact lines
y=ta(xt)

Figure 1: Sketch of the geometry of the problem: a moving dry patch mraftim.

When 0< a < m/2 the fluid is on the upper side of the substrate, representiag
sessile case, and wher2 < a < it is on the underside of the substrate, representing
the pendent case. Cartesian afagz with thex axis down the line of greatest slope and
thez axis normal to the substrate are adopted, with the subsirate O; the free surface
profile of the film is denoted by= h(x,y,t), wheret denotes time. The prescribed surface
shear stress acts down the substrate#0, and acts up if < 0.

We take the dry patch to be slender (varying much more slowthé longitudinal X)
direction than in the transversg @irection), and we neglect surface-tension effects. Then
with the familiar lubrication approximation, the velocity, v,w), pressurg and thickness
h satisfy the governing equations

UX+Vy+WZ: O7 (1)

Uuz+ pgsina = 0, (2)
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— pz—pgcosa =0, (4)

subject to the boundary conditions of no slip and no pernetran the substrate= 0:
u=0, v=w=0, (5)
balances of normal and tangential stresses on the freesurfah:
P=Pa HU=T, Vz=0 (6)
(wherep, denotes atmospheric pressure), and the kinematic conditia= h:
ht + Ux +vy = 0, (7)

where the local fluxes = u(x,y,t) andv = v(x,y,t) are defined by

_/h _¢h
u:/ udz, v:/ vdz. (8)
0 0

Integration of (1)—(4) subject to (5) at= 0 and (6) a = h yields

p= pa+pgcosa (h—2z), 9)
pgsina T
u= 2h—2)z+ —z, 10
TR AR Ly (10)
__pgcosa B

V= o hy(2h—2)z, (11)

_pgcosa > hyyz B pgsina
W= (mw+m 3)£ o heZ’. (12)

Substituting (10) and (11) into (8) gives

—  pgsina 3 T.,2 S _Pgcosa 3

u= T h 2“h Y “an h°hy, (13)

and hence the kinematic condition (7) yields the governiagi@ differential equation
for h:

hy =

pgcosa pgsina T
T(h?)h)’)y_ 3 (h3)x—@(h2)x- (14)

Onceh is determined from (14) the solution fpr u, vandw in (9)—(12) is known.
In the case of a film of constant uniform thickndgsthe solution takes the form =
Poo = Poo(2Z), U= Uco = Ueo(2), V= Voo = 0 andw = we, = 0, where

_pgsina
=%

representing steady unidirectional flow up or down the sabest with depth-averaged
velocity Ui, where

P = Pa+ PYCOSA (heo —2), Uo (2he, — 2) Z+ %z, (15)

__pgsina , T
T hoo—i—zuhoo, (16)
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which may be positive, negative or zero. For later use we tinatethe shear stress =
pdu., /dz atz= 0 acting on the substrate due to this flow is given by

Teo = PgSiNahe + T, a7

which also may be positive, negative or zero.

We are concerned with unsteady flow around a dry patch in a filthicknessh., at
infinity (that is, in a film that would be of uniform thickness, if the dry patch were
absent). We shall restrict attention to dry patches thasammetric abouy = 0 (so that
his even iny) with (unknown) semi-widtla = a(x,t), so that the fluid occupidy| > a,
andh = 0 at the contact lineg = +a. From (13) we havel = 0 aty = +a, so that the
zero-mass-flux condition at the contact lines, namely

v=+4au at y=+a, (18)
reduces tov = 0 aty = +a, and therefore we have the contact-line conditions

h=0 at y=+a, h*h—0 as y—+a (19)

2.1 A travelling-wave similarity solution
We seek an unsteady travelling-wave similarity solutioflaf) in the form

h=heF (1), n:m if E(x—ct)zo,} 20)

h = he if ¢(x—ct) <0,

whereci (with ¢ positive, negative or zero) is the velocity of the dry patptou down the
substrate, the constaff~ 0) is to be specified, and the exponamind the dimensionless
functionF = F(n) (> 0) of the dimensionless similarity varialreare to be determined.
The dry patch lies in the region wheféx— ct) > 0, and the fluid in the region where
¢(x—ct) < 0 (ahead of or behind the dry patch) is of uniform thicknessat x = ct
the thicknessh and its derivativeh, are continuous (so that, v and p are continuous
there), except at the singular point ct, y = 0, at which the free surface is normal to the
substrate, occupying€ z < he.

With (20), the terms in (14) balance provided that 1/2 (so that/ has physical di-
mensions of length), and then (14) reduces to an ordinafgrdiitial equation foF (1),
namely

4pgcosah’ (F3F") +(n [2pgsinah?F3 + 3theF2 — 6ucF] =0, (21)

where a dash denotes differentiation with respect.to
We denote the (unknown) position whéte= 0 by n = ng (corresponding to the contact-
line positiony = a), so that the fluid lies ihn| > no, and

a=/I[(x—ct)no, =L (22)

a no’
showing that the dry patch has a parabolic shape. From (19pwe

F=0 at n=no, F3F' >0 as n— no; (23)
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in addition,F must satisfy the far-field condition
F—1 as n — oo. (24)

As we shall see, the value gb is not determined as part of the solution, in general, so
that (20) represents a family of possible solutions.

If F were to have any stationary pointsfqn> ng then equation (21) would require all
derivatives ofF to be zero there, indicating that, in faét,has no stationary points, and
so increases monotonically with from F =0 atn =ngto F — 1 asn — oo; this is
consistent with numerical results presented later.

With (20), the level sets oh are the curveg = constant, that is, the film thickness is
the same at all point&, y) on each of the parabola@ 0 ¢(x — ct) (> 0).

2.2 Behaviour near n = ng

Near the contact ling = ng it is found from (21) that

1
Mopte(n —no) | 3
F [ 2pgcosahd (25)

asn — ng , which can be valid only if
fcosac > 0. (26)

Equation (25) shows that the fluid film has infinite slope atdbetact linen = ng, and
so the lubrication approximation fails there, and thereoifraedom to impose prescribed
conditions on the three-phase contact angle.

2.3 Behaviour in the limit n — o

In the limit n — o we write F = 1+ f with |f| < 1 in (21), in which casd€ = f(n)
satisfies

f"4+Knf' =0, (27)
where we have defined the consti&nby
3/ u
K=——5|To——C]|. 2
2pgcosah2 (T heo C) (28)

Equation (27) has a solution fdrsatisfyingf — 0 asn — o only if K > 0, and in that
caseF has the far-field behaviour

1 Kn?2
F-10 Eexp(—T) (29)
asn — o, showing that the transverse profile of the fluid film appreacthe uniform

far-field value in (24) monotonically.
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2.4 Physical forms of the solutions

The conditionK > 0 together with condition (26) shows that a dry patch is giesinly
if
¢costhe, Tee > pécosac > 0. (30)

Thus in the sessile case (aos> 0) if 7., > 0 then? > 0 andc > 0, so that the dry patch
occupiesx > ct, movesdownwards relative to the substrate, and has semi-widts
\/£(x—ct) no, widening with increasing, the fluid inx < ct being of uniform thickness
h., Whereas iff, < 0 then/ < 0 andc < 0, so that the dry patch occupies< ct, moves
upwardsrelative to the substrate, and has semi-walth /|| (ct — X) o, harrowing with
increasingk, the fluid inx > ct being of uniform thicknesh.,; analogous remarks apply
to the pendent case (cos< 0).

2.5 Non-dimensionalisation

We are now in a position to choogand non-dimensionalise variables. Sitkein (16)
could be zero, itis not convenient to use it as a velocityesea instead we choose to non-
dimensionalise velocities in thedirection using a velocity scalé associated with purely
gravity-driven flow, namely = pgsinah2 /u; correspondingly we non-dimensionalise
shear stresses with the stress séale pgsinah,. Thus we non-dimensionalise and
re-scale variables according to

X
X=XX", y=+/|[{IXy", z=heZ", t:Ut*, h=h,h*, a=/|¢(|Xa",
u=Uu", v= %U\ﬁ, W:UThw\/\f", c=Uc", Us,=UU;, (31)
P=Ppat+pglcosahep’, T=TT" To=TIg,

whereX (> h) is a length scale in the direction, which we may choose arbitrarily.
Also, consistent with (30), and without loss of generalitg, now write/ in the form

! = Se§he | cOtar|, (32)

where we have introduced the notatifin= sgn(cosa) = £1 andS, = sgn(T») = +1,
with now 7, = 1+ T; then (30) reduces fa.| > S.c > 0, that is,

0<Cc<T1T, OF To<C<O. (33)

Conditions for the fluid film to be thin and the dry patch to kensler are that the length
scales in the, y andz directions, namel¥, /|¢|X andhe, satisfyh., < /|¢|X < X, so
that

X > he|cota|, X > he|tanal, (34)

showing thaiX must be much larger than, and thata cannot be close to 07/2 or 1.
With stars on non-dimensional variables dropped for glaht solution (20) takes the
slightly simpler form

h=F(n), n= S50 if So§(x—ct) >0, 35)
h=1 if Se§(x—ct) <0,
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and

a=\/S.S(x—ct) o, (36)

4(F3F') 4+ Son [2F3 4+ 31F2—6cF] =0, (37)
to be integrated subject to (23) and (24). Near the contaet)li= ng equation (25) gives

with F satisfying

1
9 3
F~ {Qno&ocm - '70)} (38)
if ¢+ 0; alsoF again has the far-field behaviour (29) with néw= 3S. (7. —¢)/2 (> 0).

2.6 Numerical solution

A closed-form solution of (37) foF is not available, and so we solved it numerically,
using a shooting method, by shooting from a chosen valueetdtmtact-line position
n = no, with chosen values af andc. The solutiorF was monitored to see if it satisfied
an approximated version of (24), namely

F=1 at n=nw(>no), (39)

to within a prescribed tolerance; if not then the value oias changed and the calculation
repeated until a solution satisfying (39) for the chosemieslofng andt was found. In
fact, the numerical computation cannot be startagi-atng (because of the singular slope
there, given by (38)), so instead it was started from a pwsiji= ng+ 0, whered (> 0)

is small; thus we solved (37) subject to the approximatedtdaty conditions

1 1
9N0S.co | 3 SoCl3
F(no+9) = [%T] , F'(no+0)= ['7852 } ,

obtained from (38). This procedure was then repeated witlemvalues o® (as small
asod = 1019 and larger values df. (as large ag) = 10°%) until the solution converged
to within a prescribed tolerance.

c
8!
6 =10

(40)

- =3
27\ - T=2
S m— —
0 1 o Mo
T=-2
2t T=-3

Figure 2: Plot of c as a function ofjg for variousr.
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Figure 2 shows plots of solution curves oas a function of)g obtained by the above
procedure, for a range of valuesofFigure 3 shows an enlargement of Figure 2, giving
additional solution curves near thg axis, and Figures 4 and 5 show enlargement of
Figure 3.

c
Ol% T=-2/3

—0.2t e

Bl \ 777777

—04- c=1+T1 U= P, N

Figure 3: Enlargement of Figure 2, showingas a function ofng for t = —2/3, —11/16,
—17/24, —35/48, —3/4, —37/48, —19/24 (upper group) and = —11/8, —67/48,
—17/12,-3/2,—-19/12, 1¢4 (~ —1.6504), —5/3, —7/4, -11/6, —23/12, -2 (lower
group). Thebounding curve on whichc = 1+ 1 is shown dashed, and the asymptote
of this curve at large)o, namelyc = —1/3, is shown dotted; there is no solution in the
region between this bounding curve and tieaxis.

Some of the information in Figures 2-5 can be summarisedllmsvia There can be a
solutionc (and hence the similarity solution (20) is valid) if either 7.1 >~ —0.7947 (in
which casee > 0) or T < —4/3 (in which case < 0), but there is no solution for4/3 <
T < T¢y; for T = 1¢1 there is a single solution= 0, for whichng ~ 0.1386. Forr > —2/3
and fort < 1.3~ —1.6547 there is a solutionfor any value ofrp. Forte1 <17 < —2/3
there is a solutioe only for a finite interval ofg values, and forcz < T < —4/3 there is
a solutionc for sufficiently largeng, as well as for an additional finite interval g§ values
for somer; in all these cases thg) intervals in which solutions exist depend on the value
of 7. The curve fort = 1.2 ~ —0.7941 is the one that passes through-0,c= 0. In
Figures 3 and 5 thkounding curve arising from (33}, namelyc =1+ 1 (< 0) (on which
c — —1/3 asng — »), is shown dashed; by (38any solution curve intersecting this
bounding curve cannot lie below the point of intersectione Bolution curve for = 7¢3
is the one that pass through the minimum on the bounding ctinee(discontinuous)
solution curve fort = 14 ~ —1.6504 is the one that intersects the bounding curve at
No = 0, and the (discontinuous) solution curve foe 1.5 ~ —1.6502 is the one that just
touches the bounding curve at its maximum.
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0 0.1 0.2 03 0

Figure 4: Enlargement of Figure 3, showingas a function ofng for Tt = —0.792, —0.793,
—0.794,1cp (= —0.7941)-0.7942,—0.7944,—0.7946 andr; (~ —0.7947).

0.02 004 006 008 010 a12 o

Figure 5: Enlargement of Figure 3, showingas a function of)q for varioust, including 7 =
T3~ —1.6547,7 = T4 ~ —1.6504 andr = 1.5 ~ —1.6502. The bounding curve on
whichc = 1+ 1 is shown dashed.
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0.4+

0.2+

0 1 2 3 4 5n

Figure 6: Cross-sectional profileB(n) for t =5, 0, —2/3, —5/3 and -5, with no = 1, for
whichc ~ 2.9611, 04113, 004936,—0.5560 and-2.2820, respectively.

Figure 6 shows examples of cross-sectional proFles) for 1 =5, 0,—-2/3,-5/3 and
—5inthe case)g = 1, for which it was found that ~ 2.9611, 04113, 004936,—0.5560
and—2.2820, respectively.

In all the cases that we have examined numeric&llyncreases monotonically with
n,fromF =0atn =ngtoF — 1 asn — o (consistent with the earlier discussion in
Section 2.1). The curves far= 10 andt = —10 in Figure 2 are nearly mirror-images
of each other in the)y axis, reflecting the fact that for large enough the gravity-
driven ingredient in the flow (associated with the termgsina in (21)) is negligible
in comparison with the shear-driven ingredient (assodiatigh 7); for the same reason
the cross-sectional profilés(n) for Tt = 5 andt = —5 in Figure 6 are somewhat similar.

3 CONCLUSIONS

We have obtained unsteady travelling-wave similarity sohs of the form (20) for an
infinitely wide thin film of Newtonian fluid of hominal unifornthicknessh., flowing
around a symmetric slender dry patch moving at constantitgla on an inclined planar
substrate, the flow being driven by gravity and a constardarséteesg at the free surface.

The dry patch has a parabolic shape, which may be concave cgnoave down the
substrate. Iff, > 0 (corresponding to a surface shear stresat either acts downwards
or acts upwards but is sufficiently weak) then the dry patclveaalown the substrate,
whereas iff, < 0 (corresponding to a sufficiently strong surface sheasstréhat acts
upwards) then the dry patch moves up the substrate. It mayéiluo note that by
settingt = 0 in the governing equations, this problem will reduce to piheblem of
purely gravity-driven flow around the dry patch considergd19].

In all cases investigated numerically the film thickness feasd to increase monotoni-
cally away from the dry patch.

The parameteng is not determined as part of the solution, so that (20) reprtssa one-
parameter family of solutions; some additional criterioould be required to determine

No-
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The solutions obtained are valid for any valuehaf showing that for these solutions
there is no critical thickness or critical flux below which gy gatch is stationary but
above which it isswept away by the bulk flow.

The question of the stability of these dry-patch solutienafiinterest, as is the question
of the effect of surface tension on the flows; both of theseraatters for future work.
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