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Abstract

In this paper we use the lubrication approximation to analyse three-dimensional unsteady flow
of a thin film of Newtonian fluid around a symmetric slender moving dry patch on an inclined
planar substrate. The flow being driven by gravity and a prescribed constant shear stress at the
free surface. We obtain a novel unsteady travelling-wave similarity solution for the dry patch of
uniform thickness, in which the dry patch travels at constant speed. This solution predicts that the
dry patch has a parabolic shape which may be concave up or concave down the substrate. In all
cases investigated numerically the film thickness is found to increase monotonically away from
the contact line.

Key words: travelling-wave similarity solution, dry patch, Newtonian fluid, thin-film
flow.

1 INTRODUCTION

Dry patches can occur in both stationary and flowing fluid filmsfor a variety of reasons,
including dry-out due to localised heating, the presence ofair bubbles within the film,
inhomogeneities of the substrate, and the presence of surfactants. There is particular
interest in dry patches in films that arise in industrial contexts, such as coating processes
and heat exchangers; in particular, in coating processes, uncoated regions of the substrate
may seriously degrade the quality of the final product. As a consequence, the formation,
stability and evolution of dry patches in fluid films are problems of enduring theoretical,
experimental and practical interest.
Pioneering work on a dry patch in a flowing fluid film driven either by gravity or by

a prescribed surface shear stress due to an external air flow was performed by [2] and
extended by [9]. Two steady similarity solutions for a flow around a non-uniform slender
dry patch in a thin film draining under gravity on an inclined plane, namely one for the
case of weak surface tension and one for the case of strong surface tension were obtained
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by [6]. Early experiments on the shape and structure of a dry patch in a fluid film draining
under gravity down the outside of a vertical circular cylinder were performed by [1], and
over the last decade or so the shape and structure of a dry patch in a fluid film draining
under gravity down an inclined plane has been extensively studied both experimentally
and theoretically by Limat and his collaborators ([7], [8],[3], [4], and [5]).
In the present paper we generalise the problem of slender drypatch in a thin fluid film

driven purely by gravity studied by [10] to the problem of slender dry patch in a fluid film
driven by gravity and a prescribed constant surface shear stress.

2 PROBLEM FORMULATION

Consider a thin film of Newtonian fluid with constant densityρ and constant viscosity
µ on a planar substrate inclined at an angleα (0 < α < π) to the horizontal, subject to
gravitational accelerationg and a prescribed constant shear stressτ on its free surface
acting up or down the slope. We shall be concerned with unsteady flow of such a film
around a dry patch on the substrate, as sketched in Figure 1.

Free surface
z = h(x,y, t)

Dry patch

Contact lines
y =±a(x, t)

α

h∞

τ

g

x

y

z

Figure 1: Sketch of the geometry of the problem: a moving dry patch in a thin film.

When 0< α < π/2 the fluid is on the upper side of the substrate, representingthe
sessile case, and whenπ/2< α < π it is on the underside of the substrate, representing
the pendent case. Cartesian axesOxyz with thex axis down the line of greatest slope and
thez axis normal to the substrate are adopted, with the substrateat z = 0; the free surface
profile of the film is denoted byz= h(x,y, t), wheret denotes time. The prescribed surface
shear stress acts down the substrate ifτ > 0, and acts up ifτ < 0.
We take the dry patch to be slender (varying much more slowly in the longitudinal (x)

direction than in the transverse (y) direction), and we neglect surface-tension effects. Then
with the familiar lubrication approximation, the velocity(u,v,w), pressurep and thickness
h satisfy the governing equations

ux + vy +wz = 0, (1)

µuzz +ρgsinα = 0, (2)
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− py +µvzz = 0, (3)

− pz −ρgcosα = 0, (4)

subject to the boundary conditions of no slip and no penetration on the substratez = 0:

u = 0, v = w = 0, (5)

balances of normal and tangential stresses on the free surfacez = h:

p = pa, µuz = τ, vz = 0 (6)

(wherepa denotes atmospheric pressure), and the kinematic condition onz = h:

ht + ūx + v̄y = 0, (7)

where the local fluxes ¯u = ū(x,y, t) andv̄ = v̄(x,y, t) are defined by

ū =
∫ h

0
udz, v̄ =

∫ h

0
vdz. (8)

Integration of (1)–(4) subject to (5) atz = 0 and (6) atz = h yields

p = pa+ρgcosα (h− z) , (9)

u =
ρgsinα

2µ
(2h− z)z+

τ
µ

z, (10)

v =−
ρgcosα

2µ
hy (2h− z)z, (11)

w =
ρgcosα

2µ

(

hhyy +h2
y −

hyyz

3

)

z2−
ρgsinα

2µ
hxz2. (12)

Substituting (10) and (11) into (8) gives

ū =
ρgsinα

3µ
h3+

τ
2µ

h2, v̄ =−
ρgcosα

3µ
h3hy, (13)

and hence the kinematic condition (7) yields the governing partial differential equation
for h:

ht =
ρgcosα

3µ
(

h3hy
)

y −
ρgsinα

3µ
(

h3)

x −
τ

2µ
(

h2)

x . (14)

Onceh is determined from (14) the solution forp, u, v andw in (9)–(12) is known.
In the case of a film of constant uniform thicknessh∞ the solution takes the formp =

p∞ = p∞(z), u = u∞ = u∞(z), v = v∞ = 0 andw = w∞ = 0, where

p∞ = pa+ρgcosα (h∞ − z) , u∞ =
ρgsinα

2µ
(2h∞ − z)z+

τ
µ

z, (15)

representing steady unidirectional flow up or down the substrate, with depth-averaged
velocityU∞i, where

U∞ =
ρgsinα

3µ
h2

∞ +
τ

2µ
h∞, (16)
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which may be positive, negative or zero. For later use we notethat the shear stressτ∞ =
µdu∞/dz at z = 0 acting on the substrate due to this flow is given by

τ∞ = ρgsinαh∞ + τ, (17)

which also may be positive, negative or zero.
We are concerned with unsteady flow around a dry patch in a film of thicknessh∞ at

infinity (that is, in a film that would be of uniform thicknessh∞ if the dry patch were
absent). We shall restrict attention to dry patches that aresymmetric abouty = 0 (so that
h is even iny) with (unknown) semi-widtha = a(x, t), so that the fluid occupies|y| ≥ a,
andh = 0 at the contact linesy = ±a. From (13) we have ¯u = 0 at y = ±a, so that the
zero-mass-flux condition at the contact lines, namely

v̄ =±axū at y =±a, (18)

reduces to ¯v = 0 aty =±a, and therefore we have the contact-line conditions

h = 0 at y =±a, h3hy → 0 as y →±a. (19)

2.1 A travelling-wave similarity solution

We seek an unsteady travelling-wave similarity solution of(14) in the form

h = h∞F(η), η =
y

[ℓ(x− ct)]n
if ℓ(x− ct)≥ 0,

h = h∞ if ℓ(x− ct)< 0,

}

(20)

whereci (with c positive, negative or zero) is the velocity of the dry patch up or down the
substrate, the constantℓ (6= 0) is to be specified, and the exponentn and the dimensionless
functionF = F(η) (≥ 0) of the dimensionless similarity variableη are to be determined.
The dry patch lies in the region whereℓ(x− ct) ≥ 0, and the fluid in the region where
ℓ(x− ct) < 0 (ahead of or behind the dry patch) is of uniform thicknessh∞; at x = ct
the thicknessh and its derivativehy are continuous (so thatu, v and p are continuous
there), except at the singular pointx = ct, y = 0, at which the free surface is normal to the
substrate, occupying 0≤ z ≤ h∞.
With (20)1 the terms in (14) balance provided thatn = 1/2 (so thatℓ has physical di-

mensions of length), and then (14) reduces to an ordinary differential equation forF(η),
namely

4ρgcosαh3
∞
(

F3F ′
)′
+ ℓη

[

2ρgsinαh2
∞F3+3τh∞F2−6µcF

]′
= 0, (21)

where a dash denotes differentiation with respect toη.
We denote the (unknown) position whereF = 0 byη =η0 (corresponding to the contact-

line positiony = a), so that the fluid lies in|η| ≥ η0, and

a =
√

ℓ(x− ct)η0,
y
a
=

η
η0

, (22)

showing that the dry patch has a parabolic shape. From (19) wehave

F = 0 at η = η0, F3F ′ → 0 as η → η0; (23)
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in addition,F must satisfy the far-field condition

F → 1 as η → ∞. (24)

As we shall see, the value ofη0 is not determined as part of the solution, in general, so
that (20) represents a family of possible solutions.
If F were to have any stationary points inη ≥ η0 then equation (21) would require all

derivatives ofF to be zero there, indicating that, in fact,F has no stationary points, and
so increases monotonically withη from F = 0 at η = η0 to F → 1 asη → ∞; this is
consistent with numerical results presented later.
With (20)1 the level sets ofh are the curvesη = constant, that is, the film thickness is

the same at all points(x,y) on each of the parabolaey2 ∝ ℓ(x− ct) (≥ 0).

2.2 Behaviour near η = η0

Near the contact lineη = η0 it is found from (21) that

F ∼

[

9η0µℓc(η −η0)

2ρgcosαh3
∞

]
1
3

(25)

asη → η+
0 , which can be valid only if

ℓcosαc > 0. (26)

Equation (25) shows that the fluid film has infinite slope at thecontact lineη = η0, and
so the lubrication approximation fails there, and there is no freedom to impose prescribed
conditions on the three-phase contact angle.

2.3 Behaviour in the limit η → ∞
In the limit η → ∞ we write F = 1+ f with | f | ≪ 1 in (21), in which casef = f (η)
satisfies

f ′′+Kη f ′ = 0, (27)

where we have defined the constantK by

K =
3ℓ

2ρgcosαh2
∞

(

τ∞ −
µ
h∞

c

)

. (28)

Equation (27) has a solution forf satisfying f → 0 asη → ∞ only if K > 0, and in that
caseF has the far-field behaviour

F −1 ∝
1
η

exp

(

−
Kη2

2

)

(29)

asη → ∞, showing that the transverse profile of the fluid film approaches the uniform
far-field value in (24) monotonically.
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2.4 Physical forms of the solutions

The conditionK > 0 together with condition (26) shows that a dry patch is possible only
if

ℓcosαh∞τ∞ > µℓcosαc > 0. (30)

Thus in the sessile case (cosα > 0) if τ∞ > 0 thenℓ > 0 andc > 0, so that the dry patch
occupiesx ≥ ct, movesdownwards relative to the substrate, and has semi-widtha =
√

ℓ(x− ct)η0, widening with increasingx, the fluid inx < ct being of uniform thickness
h∞, whereas ifτ∞ < 0 thenℓ < 0 andc < 0, so that the dry patch occupiesx ≤ ct, moves
upwards relative to the substrate, and has semi-widtha =

√

|ℓ|(ct − x)η0, narrowing with
increasingx, the fluid inx > ct being of uniform thicknessh∞; analogous remarks apply
to the pendent case (cosα < 0).

2.5 Non-dimensionalisation

We are now in a position to chooseℓ and non-dimensionalise variables. SinceU∞ in (16)
could be zero, it is not convenient to use it as a velocity scale, so instead we choose to non-
dimensionalise velocities in thex direction using a velocity scaleU associated with purely
gravity-driven flow, namelyU = ρgsinαh2

∞/µ; correspondingly we non-dimensionalise
shear stresses with the stress scaleT = ρgsinαh∞. Thus we non-dimensionalise and
re-scale variables according to

x = Xx∗, y =
√

|ℓ|Xy∗, z = h∞z∗, t =
X
U

t∗, h = h∞h∗, a =
√

|ℓ|Xa∗,

u =Uu∗, v =

√

|ℓ|

X
Uv∗, w =

Uh∞
X

w∗, c =Uc∗, U∞ =UU∗
∞,

p = pa+ρg|cosα|h∞p∗, τ = T τ∗, τ∞ = T τ∗∞,

(31)

whereX (≫ h∞) is a length scale in thex direction, which we may choose arbitrarily.
Also, consistent with (30), and without loss of generality,we now writeℓ in the form

ℓ= S∞Sgh∞|cotα|, (32)

where we have introduced the notationSg = sgn(cosα) = ±1 andS∞ = sgn(τ∞) = ±1,
with nowτ∞ = 1+ τ; then (30) reduces to|τ∞|> S∞c > 0, that is,

0< c < τ∞ or τ∞ < c < 0. (33)

Conditions for the fluid film to be thin and the dry patch to be slender are that the length
scales in thex, y andz directions, namelyX ,

√

|ℓ|X andh∞, satisfyh∞ ≪
√

|ℓ|X ≪ X , so
that

X ≫ h∞|cotα|, X ≫ h∞| tanα|, (34)

showing thatX must be much larger thanh∞ and thatα cannot be close to 0,π/2 or π .
With stars on non-dimensional variables dropped for clarity the solution (20) takes the

slightly simpler form

h = F(η), η =
y

√

S∞Sg (x− ct)
if S∞Sg(x− ct)≥ 0,

h = 1 if S∞Sg(x− ct)< 0,







(35)
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and
a =

√

S∞Sg (x− ct)η0, (36)

with F satisfying
4
(

F3F ′
)′
+S∞η

[

2F3+3τF2−6cF
]′
= 0, (37)

to be integrated subject to (23) and (24). Near the contact lineη = η0 equation (25) gives

F ∼

[

9
2

η0S∞c(η −η0)

]
1
3

(38)

if c 6= 0; alsoF again has the far-field behaviour (29) with nowK = 3S∞(τ∞−c)/2 (> 0).

2.6 Numerical solution

A closed-form solution of (37) forF is not available, and so we solved it numerically,
using a shooting method, by shooting from a chosen value of the contact-line position
η = η0, with chosen values ofτ andc. The solutionF was monitored to see if it satisfied
an approximated version of (24), namely

F = 1 at η = η∞ (≫ η0), (39)

to within a prescribed tolerance; if not then the value ofc was changed and the calculation
repeated until a solution satisfying (39) for the chosen values ofη0 andτ was found. In
fact, the numerical computation cannot be started atη = η0 (because of the singular slope
there, given by (38)), so instead it was started from a positionη = η0+δ , whereδ (> 0)
is small; thus we solved (37) subject to the approximated boundary conditions

F(η0+δ ) =
[

9η0S∞cδ
2

]
1
3

, F ′(η0+δ ) =
[

η0S∞c
6δ 2

]
1
3

, (40)

obtained from (38). This procedure was then repeated with smaller values ofδ (as small
asδ = 10−10) and larger values ofη∞ (as large asη∞ = 103) until the solution converged
to within a prescribed tolerance.

c

η0
τ =−2/3

τ =−2
τ =−3

τ =−5

τ =−10

τ = 10

τ = 5

τ = 3
τ = 2τ = 1τ = 0

1 20

2

8

6

4

−2

−4

−6

Figure 2: Plot of c as a function ofη0 for variousτ .
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Figure 2 shows plots of solution curves forc as a function ofη0 obtained by the above
procedure, for a range of values ofτ. Figure 3 shows an enlargement of Figure 2, giving
additional solution curves near theη0 axis, and Figures 4 and 5 show enlargement of
Figure 3.

c

η0

c = 1+ τ

τ =−2/3

τ =−2

τ =−19/24

τ =−11/8

0 1 2

0.1

−1/3

−0.2

−0.4

−0.6

−0.8

Figure 3: Enlargement of Figure 2, showingc as a function ofη0 for τ = −2/3, −11/16,
−17/24, −35/48, −3/4, −37/48, −19/24 (upper group) andτ = −11/8, −67/48,
−17/12,−3/2,−19/12,τc4 (≃−1.6504), −5/3,−7/4,−11/6,−23/12,−2 (lower
group). Thebounding curve on whichc = 1+ τ is shown dashed, and the asymptote
of this curve at largeη0, namelyc =−1/3, is shown dotted; there is no solution in the
region between this bounding curve and theη0 axis.

Some of the information in Figures 2–5 can be summarised as follows. There can be a
solutionc (and hence the similarity solution (20) is valid) if eitherτ ≥ τc1≃−0.7947 (in
which casec ≥ 0) orτ <−4/3 (in which casec < 0), but there is no solution for−4/3≤
τ < τc1; for τ = τc1 there is a single solutionc = 0, for whichη0 ≃ 0.1386. Forτ ≥−2/3
and forτ ≤ τc3 ≃−1.6547 there is a solutionc for any value ofη0. Forτc1 ≤ τ <−2/3
there is a solutionc only for a finite interval ofη0 values, and forτc3< τ <−4/3 there is
a solutionc for sufficiently largeη0, as well as for an additional finite interval ofη0 values
for someτ; in all these cases theη0 intervals in which solutions exist depend on the value
of τ. The curve forτ = τc2 ≃ −0.7941 is the one that passes throughη = 0, c = 0. In
Figures 3 and 5 thebounding curve arising from (33)2, namelyc = 1+τ (< 0) (on which
c → −1/3 asη0 → ∞), is shown dashed; by (33)2 any solution curve intersecting this
bounding curve cannot lie below the point of intersection. The solution curve forτ = τc3
is the one that pass through the minimum on the bounding curve, the (discontinuous)
solution curve forτ = τc4 ≃ −1.6504 is the one that intersects the bounding curve at
η0 = 0, and the (discontinuous) solution curve forτ = τc5 ≃−1.6502 is the one that just
touches the bounding curve at its maximum.
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c

η0

τ =−0.7920

τ =−0.7930

τ =−0.7940
τ = τc1τ = τc2

0 0.1 0.2 0.3

0.001

0.002

Figure 4: Enlargement of Figure 3, showingc as a function ofη0 for τ = −0.792, −0.793,
−0.794,τc2 (≃−0.7941),−0.7942,−0.7944,−0.7946 andτc1 (≃−0.7947).

c

η0

c = 1+ τ

τ =−1.6420

τ =−1.6460

τ =−1.6540

τ =−1.6580

τ = τc3

τ = τc4
τ = τc5

0.02 0.04 0.06 0.08 0.10 0.12

−0.655

−0.650

−0.645

−0.640

Figure 5: Enlargement of Figure 3, showingc as a function ofη0 for variousτ , including τ =
τc3 ≃ −1.6547,τ = τc4 ≃ −1.6504 andτ = τc5 ≃ −1.6502. The bounding curve on
which c = 1+ τ is shown dashed.
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1
F(η)

η

τ = 0

τ = 5

τ =−5

τ =−2/3

τ =−5/3

0 1 2 3 4 5

0.2

0.4

0.6

0.8

Figure 6: Cross-sectional profilesF(η) for τ = 5, 0, −2/3, −5/3 and−5, with η0 = 1, for
which c ≃ 2.9611, 0.4113, 0.04936,−0.5560 and−2.2820, respectively.

Figure 6 shows examples of cross-sectional profilesF(η) for τ = 5, 0,−2/3,−5/3 and
−5 in the caseη0 = 1, for which it was found thatc ≃ 2.9611, 0.4113, 0.04936,−0.5560
and−2.2820, respectively.
In all the cases that we have examined numerically,F increases monotonically with

η, from F = 0 at η = η0 to F → 1 asη → ∞ (consistent with the earlier discussion in
Section 2.1). The curves forτ = 10 andτ = −10 in Figure 2 are nearly mirror-images
of each other in theη0 axis, reflecting the fact that for large enough|τ| the gravity-
driven ingredient in the flow (associated with the term ingsinα in (21)) is negligible
in comparison with the shear-driven ingredient (associated with τ); for the same reason
the cross-sectional profilesF(η) for τ = 5 andτ =−5 in Figure 6 are somewhat similar.

3 CONCLUSIONS

We have obtained unsteady travelling-wave similarity solutions of the form (20) for an
infinitely wide thin film of Newtonian fluid of nominal uniformthicknessh∞ flowing
around a symmetric slender dry patch moving at constant velocity ci on an inclined planar
substrate, the flow being driven by gravity and a constant shear stressτ at the free surface.
The dry patch has a parabolic shape, which may be concave up orconcave down the

substrate. Ifτ∞ > 0 (corresponding to a surface shear stressτ that either acts downwards
or acts upwards but is sufficiently weak) then the dry patch moves down the substrate,
whereas ifτ∞ < 0 (corresponding to a sufficiently strong surface shear stressτ that acts
upwards) then the dry patch moves up the substrate. It may be useful to note that by
settingτ = 0 in the governing equations, this problem will reduce to theproblem of
purely gravity-driven flow around the dry patch considered by [10].
In all cases investigated numerically the film thickness wasfound to increase monotoni-

cally away from the dry patch.
The parameterη0 is not determined as part of the solution, so that (20) represents a one-

parameter family of solutions; some additional criterion would be required to determine
η0.
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The solutions obtained are valid for any value ofh∞, showing that for these solutions
there is no critical thickness or critical flux below which a dry patch is stationary but
above which it isswept away by the bulk flow.
The question of the stability of these dry-patch solutions is of interest, as is the question

of the effect of surface tension on the flows; both of these arematters for future work.
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