Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Use of agent-based modelling to predict benefits of cleaner fish in controlling sea lice, Lepeophtheirus salmonis, infestations on farmed Atlantic salmon, Salmo salar L.

Groner, M.L. and Cox, R. and Gettinby, George and Revie, Crawford W. (2013) Use of agent-based modelling to predict benefits of cleaner fish in controlling sea lice, Lepeophtheirus salmonis, infestations on farmed Atlantic salmon, Salmo salar L. Journal of fish diseases, 36 (3). pp. 195-208. ISSN 0140-7775

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Sea lice, Lepeophtheirus salmonis, are ectoparasites of farmed and wild salmonids. Infestations can result in significant morbidity and mortality of hosts in addition to being costly to control. Integrated pest management programmes have been developed to manage infestations, and in some salmon farming areas, these programmes include the use of wrasse. Wrasse prey upon the parasitic life stages of L. salmonis and can be stocked on farms at varying densities. Despite considerable variation in the usage of wrasse, there are few quantitative estimates of how well they can control sea lice and how best to optimize their use. To explore at what densities wrasse should be stocked in order to meet specific control targets, we built an individual-based model that simulates sea lice infestation patterns on a representative salmonid host. Sea lice can be controlled through the use of chemical treatments as well as by wrasse predators. We found that the wrasse can effectively control sea lice, and the densities of wrasse needed for effective control depend upon the source of the infestation and the targeted level of control. Effective usage of wrasse can result in decreased use of chemical treatments and improved control of sea lice.