A Novel Combination of Micromechanical Testing And Thermal Analysis to Investigate the Temperature Dependence of Interfacial Adhesion in Fibre Reinforced Polymer Composites

Jim Thomason and Liu Yang

Department of Mechanical & Aerospace Engineering University of Strathclyde Glasgow, Scotland

www.strath.ac.uk/compositematerials/

Thanks to

Glasgow Research Partnership in Engineering - funding

Owens Corning – glass fibres

SABIC - polypropylene

Liu Yang - measurements

Outline: TMA – Microbond Testr

Introduction Thermoplastic Composites

- Residual Thermal Stresses
- Glass Fiber-Thermoplastic IFSS
- IFSS Experiments
 - Conventional Microbond Test
 - Microbond Test in the TMA
- **Results**
- Conclusions

Thermoplastic Composites Technology

- Strong continuing growth
- Attractive Performance:Price ratio
 - "Clean" processing no chemistry
 - Intrinsically recyclable
- Still room for improvement
 - particular need to better understand (and increase) GF–PP interface stress transfer capability (IFSS)
- Processed mostly by moulding

Residual Stress at the Interface

Fiber – Low LCTE (α)

Large $\Delta \alpha$ and ΔT from processing to room temp results in radial compressive stress at the interface

compressive stress

Modelling Interfacial Residual Stress

$$\sigma_{rm} = E_m (\alpha_m - \alpha_{fT}) \Delta T$$

$$\sigma_{rm} = A_1 (1 - \frac{b^2}{r^2}) \text{ where } b = F(V_f)$$

for $A_1 \text{ solve} \begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix} \begin{bmatrix} A_1 \\ A_3 \end{bmatrix} = \begin{bmatrix} (\alpha_m - \alpha_{fL})\Delta T \\ (\alpha_m - \alpha_{fT})\Delta T \end{bmatrix}$
where $X_{11} = 2 \left(\frac{v_m}{E_m} + \frac{v_A}{E_L} \frac{V_m}{V_f} \right) \quad X_{12} = - \left(\frac{V_m}{E_L V_f} + \frac{1}{E_m} \right)$
 $X_{21} = - \left(\frac{(1 - v_f)V_m}{E_m V_f} + \frac{(1 - v_m)}{E_m} + \frac{(1 + v_m)}{E_m V_f} \right) \quad X_{22} = \frac{X_{11}}{2}$
Nairn, J.A., Polymer Composites, 6,
(1985) 123.
Wagner H.D. and Nairn J.A.,
Compos.Sci.Tech., 57, (1997) 1289.

Residual Thermal Stress at Interface

In both models $\sigma_{\rm m} \propto \Delta T \implies \text{IFSS} \propto \Delta T$

Hence the question –

is the apparent interfacial strength (IFSS) in thermoplastic composites temperature dependent ?

Microbond Test for GF-PP IFSS

Microbond Test for GF-PP IFSS

Microbond Samples

Microbond Test for GF-PP IFSS

Assuming shear stress is distributed uniformly around the interface then -

11

Average IFSS:
$$\tau = \frac{F_{max}}{\Delta}$$

Composites Pt.A 41 (2010) pp 1077-1083

PP-Glass IFSS by Microbond Method

Microbond Test for IFSS

<u>Accurate test environment temperature</u> <u>control is a challenge</u>

Q400 EM TMA in Fiber/Film Mode

Knife Blades for TMA Microbond

TMA Microbond Test Configuration

TMA Microbond Test

Comparison Microbond Test Configurations

PP-Glass IFSS by Microdroplet Method

PP-Glass IFSS by TMA Microdroplet Method

PP-Glass IFSS by TMA Microbond Method

PP-Glass IFSS vs Test Temperature

Model Residual Thermal Stress at Interface

$$\sigma_{rm} = E_m (\alpha_m - \alpha_{fT}) \Delta T$$

$$\sigma_{rm} = A_1 (1 - \frac{b^2}{r^2})$$
 where $b = F(V_f)$

for A₁ solve
$$\begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix} \begin{bmatrix} A_1 \\ A_3 \end{bmatrix} = \begin{bmatrix} (\alpha_m - \alpha_{fL}) \Delta T \\ (\alpha_m - \alpha_{fT}) \Delta T \end{bmatrix}$$

where
$$X_{11} = 2\left(\frac{v_m}{E_m} + \frac{v_A}{E_L}\frac{V_m}{V_f}\right) = X_{12} = -\left(\frac{V_m}{E_L}V_f + \frac{1}{E_m}\right)$$

 $X_{21} = -\left(\frac{(1 - v_f)V_m}{E_m} + \frac{(1 - v_m)}{E_m} + \frac{(1 + v_m)}{E_m}V_f\right) = X_{22} = \frac{X_{11}}{2}$

Nairn, J.A., Polymer Composites, 6, (1985) 123. Wagner H.D. and Nairn J.A., Compos.Sci.Tech., 57, (1997) 1289

In both cases $\sigma_{rm} \propto \Delta T \implies \underline{\text{IFSS}} \propto \Delta T$

DSC Cooling Run for PP Solidifcation

Input for Residual Thermal Stress Model

TMA of Single Glass Fibre in Q400 EM

TMA of Single Glass Fibre in Q400 EM

Linear region (23-300°C) for LCTE

LCTE of Single Glass Fibre in Q400 EM TMA

Schoolenberg 1995, GF-PP static coefficient of friction = 0.65

Conclusions (GF-PP)

- Residual compressive stress at the composite interface may contribute significantly to the apparent IFSS
- Magnitude of these stresses is strongly influenced by test temperature vs the solidification temperature
- This results in an expectation that thermoplastic composite IFSS *should be* temperature dependent
- The TMA microbond test has enabled measurement of the IFSS of GF–PP from -40°C up to 100 °C
- <u>A strong dependence of GF-PP Interfacial Strength on</u> <u>Test Temperature has been observed</u>

- <u>Residual compressive stress at the composite interface</u> <u>may contribute significantly to the apparent IFSS</u>
- Magnitude of these stress sample temperature
- This results in an expect composite IFSS should
- The TMA microbond te the IFSS of GF–PP from

strongly influenced by fication temperature

that thermoplastic perature dependent

enabled measurement of C up to 100 °C

 <u>A strong dependence of GF-PP Interfacial Strength on</u> <u>Test Temperature has been observed</u>

www.strath.ac.uk/compositematerials/

IFSS in Other Composite Systems ?

- IFSS correlates strongly with radial residual compressive stress in GF-PP
- **GF-PP** is a relatively low adhesion system
- What about other composite systems with high adhesion?
 - GF-Epoxy?
 - GF-Polyamide ?

GF-Epoxy IFSS by TMA Microbond

Nondebonded part

GF-Epoxy IFSS by TMA Microbond

GF-Epoxy IFSS

GF-Polymer IFSS

Conclusions

- Thermal analysis equipment can provide an excellent temperature controlled environment in which to carry out micromechanical testing
- A strong dependence of Interfacial Shear Strength on Test Temperature has been observed in both GF-PP and GF-Epoxy Composites
- Residual compressive stress at the composite interface may contribute significantly to the apparent IFSS in GF-PP

Future Work

- Adhesion in other Composite Systems
 - Polyamide Glass Fibre
 - Epoxy Carbon Fibre
- Test Development
 - Microbond in the Q800 DMA ?
 - Microbond-DMA vs Temperature & Humidity

