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Abstract

In this work a recently proposed method, the gauge-cell Gibbs ensemble
Monte Carlo, is extended to deal with polar substances. The behaviour of water, a
hydrogen bonding, weakly adsorbing fluid, is compared with that of methane, a
strongly adsorbing, non-polar fluid, in the vicinity of the phase transition. The
mechanisms of condensation for the two species are seen to be significantly different
in nature. A systematic study of the effect of the pore width on the phase equilibrium
of water is also performed. Our results show that the narrowing of the pore shifts the
equilibrium transition pressure to lower values and reduces the extent of vapour

metastability, but exerts little influence on the stability of the liquid phase.

1 Introduction

First-order phase transitions occur widely in adsorption in porous materials.
Vapour-liquid equilibrium in pores occurs in several systems of interest, such as
adsorption of N, in mesoporous solids and water in both microporous and mesoporous
solids [1]. The term “vapour” is used here by analogy with bulk vapour-liquid
transitions; in the context of adsorption, the “vapour phase” corresponds to a situation
in which some molecules are adsorbed on the pore walls, with others in gas-like
configurations in the inner part of the pore. The attractive interaction between the pore
walls and the adsorbate molecules causes the equilibrium transition pressure (at
constant temperature) to shift to lower values - capillary condensation [2]. A critical
pore width also exists, below which the transition is continuous and reversible [3,4].
Throughout the years, there have been numerous attempts to describe vapour-liquid
equilibrium in porous solids, both experimentally and theoretically (for a recent

review, see [5]). Experimental studies in relatively uniform and well characterised



adsorbents, such as MCM-41 and controlled porous glasses, have been recently
reported (see [5] and references therein). Such measurements, however, can be made
only for a limited class of materials, not including, for example, activated carbons.
Molecular simulation, on the other hand, allows one to study phase equilibrium in
individual pores as well as to assess the influence of structure and chemistry of the
adsorbent on the phase coexistence. This is particularly useful in cases where the
underlying mechanisms of adsorption and phase equilibrium are not entirely
understood. The adsorption of water on activated carbon is one such case.

So far, most molecular simulation studies of vapour-liquid coexistence in
confined media have focused on simple fluids (usually described by the Lennard-
Jones potential) adsorbed in smooth slit-shaped or cylindrical pores. There have been
few published studies in which vapour-liquid equilibrium of confined water was
examined. Spohr et al. [6] observed the occurrence of capillary condensation in a
molecular dynamics simulation of water between planar walls. Unfortunately, neither
the pressure nor the chemical potential were calculated in the course of the simulation,
so comparisons with experiments are not possible. Luzar ef al. [7] have used a lattice-
gas model to study the dynamics of capillary evaporation of water between hard
walls. They found that the presence of hydrophilic sites on the surface exerted a
strong influence on the mechanism of phase transition. A series of papers have been
published by Gubbins and co-workers [8-11] on the subject of molecular simulation
of water in carbon pores. The authors have provided insight on the structure of
adsorbed water [8], as well as on the mechanism of water adsorption [9,11]. While
this work provided evidence for the occurrence of capillary condensation in carbon
pores, the grand canonical Monte Carlo method used by the authors is (as we will see

later) incapable of directly simulating phase equilibrium. To our knowledge, only two



papers have been published in which phase equilibrium data for confined water has
been determined. Brodskaya et al. [12] calculated the chemical potential at the
equilibrium transition for water between hard walls, while Brovchenko et al. [13]
presented vapour-liquid coexistence curves in smooth cylindrical pores for several
strengths of the solid-fluid interaction. In this paper we present for the first time
results from molecular simulations of water in slit-shaped graphitic pores at the
equilibrium phase transition. The behaviour of water is compared to that of a simple,
non-polar fluid - in this case, methane. We also present an analysis of the effect of
pore width on the coexistence properties.

The paper is organised as follows. In section 2 we review several methods for
the simulation of phase equilibrium in confined media, while discussing their
applicability to the simulation of water in activated carbon pores. Section 3 describes
the potential models employed for the simulation of the adsorption of water and
methane in slit-shaped graphitic pores (representing the pores in an activated carbon
adsorbent) and presents technical details of the simulation methods used. In section 4
we present the results and contrast the condensation behaviour of water and methane.

Finally, we make some conclusions in section 5.

2 Methods for Simulation of Phase Equilibrium

Most molecular simulations of adsorption studies are performed in the grand
canonical ensemble [14,15]. In this type of simulation, the temperature (7), volume
(V) and chemical potential (i) are kept constant, while the total number of molecules
(N) 1s allowed to fluctuate. By calculating the average density at the end of each run,
it is possible to plot equilibrium adsorption isotherms for pores of different sizes and
characteristics. However, when calculating isotherms by grand canonical Monte Carlo

(GCMC) simulation in the vicinity of a phase transition, the results exhibit strong
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hysteresis. figure 1 shows a sketch of a typical isotherm for the case of a vapour-
liquid transition. When approaching the phase transition from low pressures, as in a
typical adsorption experiment (line OCHI), the vapour branch overshoots the
equilibrium condensation pressure and remains metastable until reaching point C,
when it spontaneously condenses into the liquid state. Similarly, if we lower the
pressure starting from a liquid configuration, as in a desorption experiment (line
IFAO), we observe metastable liquid states below the equilibrium condensation
pressure, up to the point of spontaneous evaporation (point F). The theoretical
isotherm for this type of system would exhibit a van der Waals loop (line ODEI), in
which points D and E represent the limits of stability of the vapour and liquid phases,
respectively (the spinodal points). Between these two points the fluid can be found in
either the vapour or the liquid state, with one of these phases being metastable with
respect to the other. Beyond these points, however, only one stable phase exists.
Spontaneous condensation and evaporation occur when the density fluctuations inside
the pore are large enough to allow the free energy barrier that separates the phases to
be overcome, always before the spinodal limits of stability. In principle, if we were to
allow an infinite number of MC steps, the system would always overcome the free
energy barrier and reach the most stable phase. Thus, the true equilibrium phase
transition (segment BG) would be attainable [16]. In practice, however, hysteresis is
unavoidable in GCMC simulations. [Insert figure 1 about here]

Since the free energy of the system is not an output of the GCMC simulation,
it 1s not possible to directly calculate the conditions of phase equilibrium. A way to
circumvent this problem was proposed by Peterson and Gubbins [17]. In this method,
one must construct two reversible paths from a reference state for which the free

energy is known (or can be calculated) up to the metastable vapour and liquid



branches. The free energy can then be calculated by integrating along each of those
paths, and the condition of phase equilibrium is satisfied at the point where the free
energies are equal. The reference state is usually the ideal gas, from which the
metastable vapour phase is easily accessible. However, to access the metastable liquid
phase, one must produce a reversible supercritical isotherm, as well as a curve at
constant chemical potential to link both the supercritical and the subcritical isotherms.
The effort involved in these calculations is quite large, particularly in the case of polar
substances like water, where the interactions are long-ranged. Additionally, the
integration along the path of constant chemical potential seems to present accuracy
problems [18].

An elegant method that avoids the need for thermodynamic integration is the
Gibbs ensemble Monte Carlo (GEMC) of Panagiotopoulos, originally proposed for
the simulation of bulk coexistence [19], and later extended to confined systems [20].
The advantage of this procedure is that it is able to simulate both the liquid and
vapour phases without the need for an explicit interface. The system consists of two
separate simulation cells at the same temperature, but with the possibility of
exchanging molecules and volume between them (the total N and V remaining
constant). After equilibration, one of the pores will contain liquid, while the other will
contain vapour (the coexisting densities are, therefore, easily obtainable). The
equilibrium chemical potential can be calculated using the Widom particle insertion
method [15]. In spite of its simplicity of implementation (which has lead to its
widespread use) it presents a serious drawback for the simulation of the adsorption of
water and other fluids with highly directional potentials. This results from the volume
exchange trials, which require the positions of all atoms to be rescaled. This is

impractical for this type of system, since a change to the relative position of the water



molecules would bring about a serious disruption of the hydrogen bonded network,
leading to an almost certain rejection of the trial. Furthermore, in a situation where
polar surface sites are fixed on the surface of the pore (which is the situation of
fundamental and practical interest in the case of water adsorption), a volume
exchange would cause an unphysical change in the relative position of these sites.
Molecular dynamics (MD) in the canonical ensemble (constant N, V' and T)
has also been applied to study phase equilibrium. One approach [21] essentially
involves the quenching of the fluid in the pore from a supercritical to a subcritical
temperature. The fluid will then, given enough time, equilibrate into two distinct
phases separated by an interface. An alternative method is to simply simulate a large
pore at a density that is intermediate between liquid and vapour [22,23]. Provided that
the system is large enough and is allowed sufficient equilibration time, it will also
separate into two distinct phases. In both cases, one must then calculate the chemical
potential using, for example, the particle insertion method. The advantages of this
method are that it provides dynamic information about diffusion in the pore and
kinetics of the phase transition, as well as showing details of the interface itself. The
authors also suggest the possibility of using a canonical Monte Carlo (CMC)
simulation instead of MD (although in this case one will not obtain any dynamic
information). This approach, however simple in principle, requires large system sizes
and very long equilibration periods, which limit its applicability to water simulations.
Some other variants of the MC method have also been developed for the
simulation of phase equilibrium. One of these is the isotension ensemble MC [24],
which also involves volume changes and is thus impractical for the same reasons as
the GEMC. A different type of approach is the basis of the histogram reweighting

method [25,26]. Essentially, this involves calculating the total energy and density over



a series of GCMC simulations and then collecting them in the form of histograms.
These histograms allow for the construction of the grand canonical partition function,
from which it is possible to calculate the equilibrium phase transition pressure [27].
This method is particularly useful in the vicinity of the critical point, where density
fluctuations are large (thus allowing for the construction of the histograms with only a
few runs), but becomes much more computationally demanding at lower reduced
temperature, where a large number of simulations is required to accurately construct
the histograms.

An alternative way of calculating the equilibrium phase transition by
thermodynamic integration was proposed recently by Neimark and Vishnyakov [18].
Their so-called gauge-cell method is, at its core, similar to the pore-fluid Gibbs
ensemble method [20], but the volume of the bulk (or “gauge”) cell and the total
number of molecules are adjusted so as to restrict the density fluctuations inside the
pore. This enables one to plot the entire van der Waals loop, including the metastable
vapour and liquid branches as well as the unstable branch of the isotherm. We thus
obtain a reversible path between the vapour and liquid phases that can be integrated to
obtain the point of equal free energy. It is possible to show [18] that this condition is
satisfied by Maxwell's construction of equal areas. Further support to the validity of
this type of approach is given by the work of Corti and Debenedetti [28], who
performed Monte Carlo simulations of bulk vapour-liquid equilibrium using a
"restricted ensemble". They also obtained continuous van der Waals loops at
subcritical conditions and went on to show that the results are independent of the
severity of the constraint (provided it is severe enough to prevent incipient phase

separations). These authors concluded that the van der Waals loops thus obtained are



the true equation of state of a constrained system and not simply an artefact of the
simulation method [28].

This type of GEMC simulation does not require mechanical equilibrium
between the pore and gauge cells due to the tensorial nature of the pressure in the pore
[20], so there is no need for the inconvenient volume exchange steps. The gauge-cell
method was compared to both the Peterson and Gubbins method of integration and
the pore-pore GEMC method by Neimark and Vishnyakov [18] and was found to
yield consistent results in all cases examined. Furthermore, it required significantly
less computational effort than the Peterson and Gubbins method of integration, while
also providing information about the metastable and unstable branches of the isotherm
(such as limits of stability of the vapour and liquid phases). Although it does possess
some drawbacks (see the next section for details), it seems to be the most suitable

method for our purposes.

3 Simulation Details

Water is represented by the SPC/E potential [29]. This model is composed of a
Lennard-Jones site and a negative charge at a location corresponding to the oxygen
atom in the water molecule, and two positive point charges located at the positions of
the hydrogen atoms. Geometric and potential parameters were taken from Berendsen
et al. [29]. Methane molecules are represented by a single Lennard-Jones site, with
parameters taken from Hirschfelder ef al. [30]. Each pore wall is represented by an
infinite number of graphitic layers composed of Lennard-Jones sites. The pore width
(w) is defined as the distance between the centres of the carbon atoms of the
innermost layers. Furthermore, it is assumed that the walls are structureless and the
carbon atoms are smeared out uniformly over the graphitic layer. The potential

between an adsorbate molecule and this smooth carbon surface is thus given by the
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10-4-3 potential of Steele [31]. Solid-fluid Lennard-Jones parameters were calculated
using the Lorentz-Berthelot combining rules. Potential parameters for water, methane
and graphite are summarised in table 1. [Insert table 1 about here]

We have used GCMC simulations to calculate adsorption and desorption
isotherms in pores of several widths. The simulation cell, representing the slit pore, is
rectangular, bounded in the z direction by the pore walls and replicated up to infinity
in the x and y directions by employing periodic boundary conditions. Unless
otherwise stated, the number of equilibration steps for each point of the adsorption
and desorption isotherms was 1x10’. The sampling period was divided into 20 blocks
of at least 10° steps to obtain a set of independent samples, from which an overall
average density and a standard deviation were calculated. Each type of MC trial
(displacement, creation and destruction) was chosen randomly with the same
probability. In the case of water (a multi-site molecule) the displacement trial entailed
a random rotation as well as a translation of the molecule. Since the potential between
charged molecules is long-ranged in nature, special techniques must be employed
during water simulations to account for interactions beyond the central periodic cell.
We have found the method of Heyes and van Swol [32] to be the most efficient for
handling long-range interactions in this type of application. Further details concerning
the efficient implementation of the GCMC algorithm for water adsorption studies
were given in a previous publication [33].

The gauge-cell method requires two separate simulation cells at the same
constant temperature, one representing the pore and another representing the bulk
fluid reservoir of limited capacity. The pore cell was identical to the one used in the
GCMC method and is described above. The gauge cell was cubic in geometry and

was replicated up to infinity in all three directions by employing periodic boundary
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conditions. Each type of trial (displacement in each cell and particle exchange
between both cells) was randomly chosen with equal probability. The acceptance
criteria for both trials are identical to those of the pore-fluid GEMC [20], so they shall
not be repeated here. For each point of the isotherm, the system was allowed to
equilibrate for at least 6x10° steps after which the densities in both cells were
calculated using an analogous procedure to the GCMC simulations, with a minimum
sampling block size of 4x10° steps. Long-range interactions in the water simulations
were accounted for using the method of Heyes and van Swol [32] for the pore cell and
using the standard three-dimensional Ewald sums [1] for the gauge cell.

The total system, comprising both simulation cells, is, strictly speaking, in the
canonical ensemble (i.e., the total N, V' and T are constant). Thus, at equilibrium, the
total Helmholtz free energy (F) is at a minimum. The fact that the values of F and N
for the total system are the sum of their individual components in each cell (from here

on, quantities referring to the gauge cell will be denoted by a subscript "g" while

quantities relating to the pore will have a subscript "p") leads to the equilibrium

condition:
oF, oF
v Tl M
& /Ny, r v,
The stability criterion for the total system is
O°F O°F,
: = >0 2
ON, ON,

v,.T V,.T
The fulfilment of this condition, however, does not require that the fluid inside the

pore be stable [18]. If one wishes to sample the unstable branch of the isotherm,

equation (2) implies (assuming that the fluid in the gauge cell is itself stable) that
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Substituting equation (1) for the chemical potential, we obtain, after manipulation,
v, 0 op,
v, ou . ou .

where p is the density. Equation (4), originally presented by Neimark and Vishnyakov
[18], imposes restrictions on the size of the gauge cell in order to allow for the
sampling of unstable points.

This criterion is written in terms of the chemical potential. However, in most
practical situations, the relevant thermodynamic variable is the pressure in the bulk
phase (P). In the original pore-fluid Gibbs ensemble method [20], the chemical
potential was calculated during the simulation by the particle insertion method, and
this could in turn be related to the pressure. In the gauge-cell method, as proposed by
Neimark and Vishnyakov [18], the pressure was instead calculated from the density in
the gauge cell. This can be accomplished by using an appropriate equation of state or
by performing a series of independent simulations in the gauge cell alone. By
performing such a set of simulations, we have observed that the fluid in the gauge cell
behaves essentially as an ideal gas for all the conditions of relevance to this study.
Thus, the pressure can be calculated from the density in the gauge cell using the ideal
gas law,

P=p k,T (5)

where kg is Boltzmann's constant. For each individual point on the isotherm, the final
number of molecules in each cell are related by

N=N,+N, (6)
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since the total number of molecules in the system must remain constant throughout

the simulation. It follows from equation (6) that:

- __& 7
pP Vp Vppg ()

Substituting equation (5) into the above expression we arrive at:

p,=—- (8)

From this expression, we can see that all the possible outcomes of each run lie on a
straight line in a pressure vs. density plot, since all other variables remain constant.
This is represented schematically by the dashed line in figure 1. Depending on the
fixed value of N and V,, this trajectory of possible outcomes will intersect the
isotherm in one or more points. Those variables should be adjusted so that there is
only one point of intersection, but this is difficult to achieve in practice since we do
not know what the isotherm looks like a priori. If there are multiple points of
intersection, the simulation will converge to the most stable configuration and this
makes it difficult to sample the unstable branch of the isotherm. The precise criterion
for sampling in the unstable region is given by equation (4). Graphically, this means
that the slope of the trajectory of possible outcomes must be smaller than the local
derivative of the unstable branch of the isotherm. The trajectory represented in figure
1 shows a case where this criterion is satisfied. The final result of this run will lie at
point J. In practice, the tuning of N and ¥, is a process of trial and error. A few initial
runs will provide a rough sketch of the van der Waals loop, and this can be refined by
more simulations for which it will be easier to determine the appropriate values of N
and V,. It is interesting to note that equation (8) reduces to a constant pore density,
corresponding to the canonical ensemble, when V, = 0 (a horizontal line in the

diagram of figure 1). In fact, it is possible to obtain the van der Waals loop by a
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canonical MC simulation, but in this case the chemical potential must be determined
using the particle insertion method, which suffers from accuracy problems [18].

After obtaining the entire isotherm, it is simply a case of performing a
numerical integration to obtain the point of equilibrium phase coexistence. This can

be calculated by Maxwell's rule of equal areas [18]:
s Hoys Hs
f padu—f P A +f pydn =0 (9)
Meq His Meq

In the above equation, subscript a refers to the adsorption branch, subscript u refers to
the unstable branch, subscript d refers to the desorption branch, subscript vs refers to
the vapour spinodal point, subscript /s refers to the liquid spinodal point and subscript
eq refers to the point of equilibrium phase coexistence. For the integration procedure,
we have simply used the trapezoidal rule, since the possible errors will be smaller that
the errors inherent to the simulation method.

We have also performed some Monte Carlo simulations in the canonical
ensemble, mainly as a check of the results of the gauge-cell method. In a CMC
simulation, N, V and T are kept constant and the system equilibrates by virtue of
displacement trials alone. In this type of simulation, the conjugate variables p and N
switch the roles they have in a GCMC simulation; here the density is fixed and the
chemical potential is calculated during the run. To calculate the chemical potential,
we have used the particle insertion method due to Widom [34]. This essentially
involves the random creation of a test particle uniformly over the pore volume at
frequent intervals during the simulation. The expression for the calculation of the

chemical potential in a slit-shaped pore is [35]:

m =3lnA+ln<p(z)>—ln<exp[_i(;)]> (10)

B
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In the above expression, A is the thermal de Broglie wavelength, U is the potential
arising from the interaction of the test particle with all the other molecules in the
system, and the angular brackets denote an ensemble average. When the system
reaches equilibrium the last two terms in equation (10), although strongly dependent
on z, should yield a constant when added. One must note, however, that this method
runs into accuracy problems when the density is close to zero (such as near the centre
of the pore when adsorption is confined to a monolayer on each pore wall) or very
high (as in a dense adsorbed layer). At very low density there is a large uncertainty in
the calculation of the second term on the right-hand side of equation (10), whereas if
the density is too high, the insertion of the test particle becomes extremely difficult
and the average of the last term on the right-hand side of equation (10) is inaccurate.

These aspects will be discussed in more detail in the next section.

4 Results and Discussion

In figure 2 we show adsorption isotherms for methane in a slit pore of width 2
nm at a temperature of 120 K. This corresponds to a reduced pore width (w, = w/cy,
where oy is the Lennard-Jones molecular diameter for the adsorbate) of 5.2, and a
reduced temperature (7, = 7/T., where T, is the critical temperature) of 0.63. The
pressure is scaled by the bulk saturation pressure (Ps,). These isotherms were
obtained from GCMC simulations with different lengths of equilibration period. In all
isotherms, we can identify four distinct regions. At very low pressure, there is a steep
rise in adsorption (closed symbols), corresponding to the formation of a monolayer on
the surface of the carbon. After this monolayer is complete, there is little further
adsorption until the pressure of spontaneous condensation (Ps.) is reached. At this

point, the fluid abruptly jumps from a vapour-like to a liquid-like state, remaining in
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this state as the pressure is further increased. If we start from a configuration in the
liquid state and gradually reduce the pressure, we can obtain a desorption isotherm
(open symbols). As the pressure is lowered, the system remains in the liquid state
down to the point of spontaneous evaporation (Py). As expected, the GCMC
isotherms show hysteresis in the region of phase equilibrium. However, the results in
the vicinity of the phase transition are highly dependent on the length of the
equilibration period. As we can see from figure 2, the size of the hysteresis loop
decreases with the number of equilibration steps until it almost vanishes for very long
simulations. This supports the hypothesis that with an infinite-sized GCMC run the
true equilibrium transition would in principle be attainable. These observations are in
accordance with the findings of Schoen ef al. [16]. We have also checked for finite-
size effects by performing GCMC runs with different sizes of the simulation cell. We
have observed the results to be invariant (within statistical errors) when the lateral
dimensions of the cell are larger that the width of the pore. If the lateral dimensions
are equal to or smaller that the pore width, the results are no longer reliable; the
system was observed to oscillate between the two phases for a wide range of pressures
and this did not allow for adequate sampling. A similar effect was also observed by
Schoen et al. [16] in their MC studies. In all subsequent GCMC simulations, we have
used a lateral dimension of 3 nm for the simulation cell. [Insert figure 2 about here]
We now turn our attention to the results obtained from a series of simulations
using the gauge-cell method for the same system (figure 3 shows a close-up of the
isotherm in the region of phase equilibrium). [Insert figure 3 about here] With this
method, we were able to trace the entire van der Waals loop, including stable,
metastable and unstable points. This enabled us to calculate the equilibrium transition

pressure (P.,) by thermodynamic integration (as described in the previous section).
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The value obtained lies between Py, and Py, which indicates that both the vapour and
the liquid phases remain metastable during GCMC adsorption and desorption runs,
respectively. The results of the gauge-cell method overlap nicely with the GCMC
simulations in the stable and metastable regions, which confirms the consistency of
the method. They are also, as expected, independent of the size of the gauge cell (see
figure 3). From an analysis of the error bars, we have concluded that in order to
reduce the statistical errors, V, should be as large as possible (while still avoiding
multiple intersection points with the isotherm). We have also investigated the effect of
the lateral dimensions of the pore cell on the gauge-cell results. figure 4 shows results
obtained from simulations using three different values of V). The results are
statistically indistinguishable for the two largest cells, but, as in the case of the GCMC
results, we find a marked difference when the cell is cubic. [Insert figure 4 about here]
We have therefore used a lateral dimension of 3 nm for the pore cell in all subsequent
simulations. To further check the results of the gauge-cell method, we have traced the
van der Waals loop using CMC simulations together with the particle insertion
method. These results are shown in figure 5. The loops overlap within statistical error,
which once more confirms the validity of the gauge-cell calculations. [Insert figure 5
about here] In the CMC method, it was difficult to obtain accurate results, due to the
problems inherent to the particle insertion method at both very low and very high
densities. By plotting chemical potential profiles obtained with this method for
different sampling sizes (figure 6) it is possible to see that only for very long CMC
runs is p essentially constant across the whole pore. [Insert figure 6 about here] We
have also checked the value of P,, obtained with the gauge-cell method by comparing
it to the outcome of a CMC simulation in a very large pore (lateral dimensions of 7.5

nm). This simulation follows the prescription of Heffelfinger and van Swol [21,22]
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for calculating the chemical potential at the equilibrium phase transition, as described
in section 3. In the previous CMC simulations with a small periodic cell, the system
was forced to remain homogeneous and we were thus able to plot the van der Waals
loop. If the cell is large enough, however, the system will tend to separate into two
distinct phases [23]. The chemical potential of such a system, if calculated correctly,
should yield the value of P.. In figure 7 we show a snapshot of a typical
configuration seen during the CMC run. We can easily confirm that the system has
indeed split into two distinct phases (vapour in the centre of the simulation cell and
liquid towards the edges) separated by an interface. [Insert figure 7 about here]

In table 2 we present the values of P, calculated by several simulation
methods: integration of the van der Waals loop obtained by the gauge-cell method,
integration of the loop obtained by CMC simulations imposing fluid homogeneity,
and the outcome of a CMC simulation with phase separation. Also shown are the
estimated errors and the approximate length of computer time required for each
calculation. There is very good agreement between the values of P,, calculated by all
three methods, but the gauge-cell method is by far the fastest. In light of this, the
gauge-cell method is the most practical for the calculation of coexistence. In spite of
the fact that it requires a certain amount of trial and error to sample the unstable
region, it is still more accurate than the CMC method combined with integration of
the van der Waals loop, which suffers from the already mentioned difficulties
associated with the particle insertion method. The CMC simulation with phase
separation provides a straightforward, easy to implement method. However, in such a
large and heterogeneous system, constancy of the chemical potential along the pore is
difficult to achieve. In fact this particular run required a sampling size of 2x10® Monte

Carlo steps. Such a long simulation becomes impracticable when dealing with polar
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molecules such as water, when computationally intensive long-range interactions
must be evaluated. It is worth mentioning in passing that GCMC simulations for this
system yielded (non-equilibrium) condensation and vaporisation pressures of P/Pg, =
0.0750 and 0.0743, respectively. For this combination of pore size and temperature, in
which the hysteresis loop obtained with the GCMC method is very narrow, these
values give a tight bound on the equilibrium transition pressure. [Insert table 2 about
here]

A similar study of the vapour-liquid transition was performed for the same
pore size at a temperature of 86 K (7, = 0.45), and the results are presented in figure
8. As we are now further away from the critical temperature, the extent of
metastability is larger, as well as the hysteresis loop. In fact, the GCMC desorption
branch now extends virtually down to the liquid spinodal point. This effect is due to
the fact that at a lower temperature the fluctuations are reduced, and therefore the
system remains trapped in metastable configurations for longer. In this case, longer
equilibration periods resulted in an almost insignificant reduction of the size of the
hysteresis loop. It should be noted that at this temperature methane is likely to exhibit
freezing transitions [36]. However, we did not analyse this phenomenon in detail,
since the main purpose of our methane simulations is a direct comparison with the
behaviour of water. [Insert figure 8 about here]

In figure 9 we present results using both GCMC and the gauge-cell method for
water adsorbed in a 1.64 nm graphitic pore at 293 K. This represents equivalent
reduced conditions (w, and 7}) to those of the methane simulation at 86 K, in order to
allow for direct comparison between the results. It becomes clear at once that the
qualitative behaviour of water adsorbed in a graphitic pore is significantly different

from that of methane. The first obvious difference in the GCMC results is that there is
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hardly any water adsorbed in the pore at low pressure. The graphite pore is
hydrophobic, which is due to a very low fluid-solid affinity in this system.
Furthermore, the spontaneous condensation occurs long before any monolayer is
formed, and the transition is from an essentially empty pore to a pore filled with liquid
water. In fact, the spontaneous condensation pressure is even larger than the bulk
saturation pressure at 293 K, which is also a consequence of the hydrophobicity of the
graphite pore. Once more, we observe pronounced hysteresis, with the desorption
curve extending almost down to the limit of stability of the liquid phase. This
behaviour of water adsorbed in carbon pores qualitatively agrees with experimental
results [1], as well as with independent molecular simulation studies [8,9] using
different water models. [Insert figure 9 about here]

We have obtained the corresponding van der Waals loop from a series of
simulations with the gauge-cell method and proceeded to calculate P,, for water. A
check of finite size effects for the water isotherm has also been performed (results not
shown here) and the same conclusions as in the case of methane have been reached. It
is worth noting that the error bars in the lower density part of the loop, close to the
vapour spinodal, are quite large. This originates from the need to use a very small
gauge cell in order to obtain points in this part of the unstable branch (due to the very
small local gradient of the unstable branch is this range - see section 3). Indeed, the
unusual shape of the loop makes sampling in this region rather difficult, so only with
relatively long simulation runs is one able to obtain accurate results in the vicinity of
the vapour spinodal.

From the results we can see that the limit of stability of the vapour phase
extends to very high pressures, substantially above the bulk saturation pressure.

However, the equilibrium transition pressure lies well below Py, Thus, the effect of
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confinement is to reduce the transition pressure relative to that of the bulk. In the case
of water confined between hard walls (i.e. with no attractive part of the potential), the
opposite effect has been observed by simulation [12]. However, the attractive
potential of the carbon walls, although weak compared to the water-water interaction,
seems to be strong enough to bring about a shift of the vapour-liquid transition to
lower pressures.

The differences between the behaviour of water and methane can be explained
based on the different mechanisms for condensation. To aid visualisation of this
phenomenon, we have calculated density profiles across the pore for various values of
the average density (marked by arrows in figure 8 and figure 9). These are presented
in figure 11 for methane and figure 13 for water, while corresponding snapshots of
typical configurations obtained during each run are shown in figure 10 for methane
and figure 12 for water. As we have seen, adsorption of methane at low pressure
occurs only at the pore walls (figure 10a) until a complete monolayer is formed
(figure 10b). As the pressure is increased further, the adsorbate tends to form a second
layer parallel to the existing layer (figure 10c). However, this configuration is already
unstable. In fact, as soon as the density fluctuations are large enough to cause the
layers on opposite sides of the pore to connect, spontaneous condensation occurs. The
stable phase is a liquid-filled pore (figure 10d). [Insert figure 10 about here] This
mechanism of condensation, which occurs near the end of the metastable vapour
branch, is similar to that observed by Heffelfinger et al. [22] in their MD simulations
of cylindrical pores and by Miiller and Gubbins [10] in slit-shaped carbon pores, and
agrees with the approach of Saam and Cole [37] based on instability and metastability
of adsorbed films. The density profiles (figure 11) start building up near the walls at

first and only when the monolayer is complete is there any significant adsorption near
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the centre of the pore. That is why in a GCMC simulation the second layer is not
formed before the pore fills with liquid (in a larger pore, a second adsorbed layer
would be able to form before the onset of condensation). [Insert figure 11 about here]
The behaviour described above is typical of a system in which there is a large
affinity between the solid and the adsorbate. In the case of water on graphite, the
opposite is observed. Due to the possibility of formation of hydrogen bonds with each
other, water molecules tend to cluster together. The formation of an adsorbed
monolayer is therefore energetically unfavourable. The pore is initially empty until a
small cluster of water molecules appears (figure 12a). This allows more water
molecules to bond to the cluster, until it spans the whole pore width (figure 12b). It
then extends laterally across the pore (figure 12c¢) and finally the liquid phase is
reached (figure 12d). [Insert figure 12 about here] All the density profiles (figure 13)
have basically the same shape along the z direction, but they simply extend laterally
as the adsorbed density in the pore increases. One might say that the methane
adsorbed phase "grows" from the walls inward, while the water "grows" laterally
along the pore. This has an effect on the structure of the liquid phase, which is
different for water and methane (one can see this by comparing the density profiles at
the highest average density for the two species in figure 11 and figure 13), once more
in agreement with previous simulation results [8]. It should be noted, however, that all
the water configurations illustrated (except, of course, the empty and the liquid-filled
pore) are unstable and are never observed in a GCMC isotherm. Instead, the pore
remains empty until density fluctuations are large enough to allow the formation of a
pore-spanning cluster, after which the pore instantaneously fills with liquid. This also
explains the large extent of metastability of the vapour phase in water adsorption,

since the variation in density that must be achieved to jump from the vapour to the
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liquid phase is extremely large, and this only becomes possible at very high pressures.
In the case of methane, on the other hand, there is only a small distance to be covered
after the monolayer is formed, and therefore the onset of liquid formation occurs at a
much lower relative pressure. [Insert figure 13 about here]

To complete our analysis, we have examined the effect of pore width on the
phase equilibrium of water. The isotherms obtained using the gauge-cell method for
three different pore sizes are shown in figure 14. It can be seen that a reduction of w
brings about a reduction in P,,, a decrease in the extent of vapour metastability and
also a decrease in the pressure of spontaneous condensation of the GCMC isotherm.
An increase in the pore width means that it is harder for a pore-spanning cluster to
form. The system remains trapped in the vapour phase for longer, until high pressure
allows for density fluctuations of enough magnitude to overcome the large energy
barrier between the two phases. In a smaller pore the attractive parts of the solid-fluid
potential for the individual walls overlap, and this effect, associated to the reduction
of the physical distance between the walls, leads to an earlier onset of condensation.
The increase of P,, with w i1s caused mainly by a greater extent of vapour
metastability, since the liquid spinodal is seen to be almost independent of the pore
width. This might seem surprising, but in fact, once the liquid phase is formed, its
stability is mainly dictated by liquid-liquid rather than liquid-solid interactions. Thus
the distance between the pore walls exerts little influence on the limit of stability of
the liquid phase. Effectively, this means that there will be a lower limit to the pressure
at which a hysteresis loop in a real adsorbent will close. This limit will be dictated
solely by thermodynamic considerations and will be essentially independent of the

pore size. [Insert figure 14 about here]
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5 Conclusions

In this paper we have applied grand canonical, canonical and gauge-cell
Monte Carlo simulations to study the vapour-liquid equilibrium of water and methane
in graphitic pores. The gauge-cell method was shown to be a useful method for this
type of study, since it provides information not only about the phase coexistence
properties, but also about the limits of stability of the vapour and liquid phases. A
detailed description of the implementation of the method was given and a check of the
results against CMC simulations was also performed. The gauge-cell method
possesses several advantages relative to more widely employed methods (such as the
Peterson and Gubbins thermodynamic integration and the pore-pore Gibbs ensemble
method), the most important for our case being the possibility of application to
chemically heterogeneous pores using relatively expedient simulations. However, it
still requires a certain amount of trial and error and close monitoring of the results of
individual runs. Nevertheless, it seems to be the most promising method available to
date for our purposes.

We have, for the first time, presented simulation results for water in carbon
pores at the equilibrium phase transition and compared them with methane adsorption
at the same reduced conditions. The behaviour of these two fluids was observed to be
quite different in nature. The strong solid-fluid attraction in the case of methane
induced the adsorption of a dense monolayer at the surface prior to condensation. At
high enough pressure, density fluctuations inside the pore cause the two adsorbed
layers to connect, forming a liquid bridge. After this, the pore instantaneously fills
with liquid. In the case of water, the solid-fluid interactions are much weaker than the
hydrogen bonds established between fluid molecules. This means that water

molecules tend to cluster together inhibiting the formation of a monolayer. The

24



formation of a large cluster that connects both pore walls seems to be critical in the
process of condensation, the transition being from an essentially empty pore to a pore
filled with liquid water. The effect of pore width on water adsorption was also
analysed. We have observed that a decrease of the pore width shifts the equilibrium
transition to lower pressures and reduces the extent of vapour metastability. This is a
combined result of the decrease of the physical distance between the pore walls and
the enhancement of the solid-fluid attractive potential in narrow pores. However, the
effect on the liquid metastable state seems to be almost negligible. This stems from
the fact that in a closely packed liquid configuration, the fluid-fluid interactions are
predominant over the solid-fluid interactions. The instability of the liquid is brought
about by the formation of a large enough bubble of vapour inside the pore, and this

process is little influenced by the solid-fluid interactions.
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table 1: Potential parameters for water, methane and graphite.

Site o/nm &/(J.mol™) gle
Water H 0.0 0.0 +0.4238
o) 0.3166 650.2 -0.8476

Graphite C 0.340 232.8 0.0

Methane CH4 0.381 1232.1 0.0




table 2: Reduced vapour-liquid equilibrium transition pressure for methane adsorbed
in a 2 nm pore at 120 K calculated by several methods. Also shown are the estimated

error in the calculations and the approximate computation time on a single processor.

Method Peq / Pat Estimated error  Time (hrs)
Gauge-cell MC 0.07464 0.00156 5.80
CMC (homogeneous system)+
0.07429 0.00351 26.19
integration
CMC (heterogeneous system with
0.07456 0.00249 51.65

phase separation)
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figure 1: Sketch of a typical isotherm at subcritical conditions. Segment CH
represents the point of spontaneous condensation in a GCMC simulation; segment FA
is the point of spontaneous evaporation in GCMC; segment BG shows the point of the
true equilibrium transition; points D and E are the spinodal limits of stability of the
vapour and liquid states, respectively; point I represents the end point of the
adsorption run and the start of the desorption run; the dashed line shows a trajectory
of possible outcomes of a gauge-cell simulation (for a given value of N and Vg); and

point J is where this trajectory intersects the unstable branch of the isotherm.
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figure 2: GCMC isotherms for methane adsorbed in a slit pore of 2 nm in width, at a
temperature of 120 K. Squares (connected by a continuous line) were obtained from a
simulation with 501105 equilibration steps; circles (connected by a dashed line)
correspond to an equilibration period of 201106 steps; and triangles (connected by a
dotted line) are for 11107 equilibration steps. Filled symbols represent adsorption and

open symbols represent desorption.
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figure 3: Isotherm for methane adsorbed in a slit pore of 2 nm in width, at a
temperature of 120 K. Circles represent GCMC results with an equilibration period of
2[1106 steps. This length was chosen to more clearly show the metastability of the
vapour and liquid phases. Remaining symbols represent results of the gauge-cell
method using different values of Vg. The dashed line shows the true equilibrium

phase transition. Error bars not shown are the size of the symbols used.
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figure 4: Analysis of finite-size effects for methane in a 2 nm pore at 120 K. Circles
are the same as in figure 3 and remaining symbols are the results from the gauge-cell
method at different lateral dimensions of the pore cell (Lp), as follows: diamonds, Lp

= 2 nm; squares, Lp = 3 nm; triangles, Lp = 4 nm.
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figure 5: Comparison between the gauge-cell method and CMC for methane at 120 K
in a 2 nm pore. Circles are the same as in figure 3, squares represent the results of the
gauge-cell method and triangles represent the loop obtained from CMC simulations

with a small simulation cell.
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figure 6: Chemical potential profiles for methane at 120 K across a 2 nm pore,
obtained from CMC simulations. The dashed-dotted line shows the results for a
sampling period of 111106 Monte Carlo steps, the dotted line is for 111107 steps and

the continuous line corresponds to 107108 steps.
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figure 7: Snapshot of a typical configuration obtained during the CMC simulation
with a large periodic cell. Methane molecules are represented by the light grey

spheres, while the graphite pore walls are shown in dark grey.
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figure 8: Isotherm for methane adsorbed in a 2 nm pore at 86 K. Symbols are the same
as in figure 3. The small arrows and the labels mark the points at which density

profiles and snapshot configurations were obtained.
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figure 9: Isotherm for water in a pore of width 1.64 nm at 293 K. Symbols are the
same as in figure 3. The small arrows and the labels mark the points at which density

profiles and snapshot configurations were obtained.
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figure 10: Snapshots of typical configurations corresponding to the points marked in

figure 8 and the density profiles in figure 11. Grey spheres represent methane

molecules.
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figure 11: Density profiles for methane adsorption at 86 K inside a 2 nm pore, from
gauge-cell simulations. For ease of visualisation, each profile is shifted upwards by
120 molecules/nm3 relative to the preceding one. The average density values are,
from bottom to top, 2.78 molecules/nm3 (corresponding to point a in figure §), 5.56
molecules/nm3 (point b), 7.22 molecules/nm3 (point ¢) and 12.2 molecules/nm3

(point d).
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figure 12: Snapshots of typical configurations corresponding to the points marked in
figure 9 and the density profiles in figure 13. The light grey transparent spheres
represent water molecules. The solid spheres show the positions of the point charges
within each water molecule, dark grey for negative charges and black for positive

charges.
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figure 13: Density profiles for water adsorption at 293 K inside a 1.64 nm pore, from
gauge-cell simulations. For ease of visualisation, each profile is shifted upwards by 30
molecules/nm3 relative to the preceding one. The average density values are, from
bottom to top, 1.36 molecules/nm3 (corresponding to point a in figure 9), 4.07
molecules/nm3 (point b), 10.16 molecules/nm3 (point ¢) and 27.1 molecules/nm3

(point d).
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figure 14: Isotherms for water at 293K adsorbed in pores of different width. Symbols
are the results of the gauge-cell method: filled squares, w = 1.64 nm; open circles, w =
0.94 nm; filled triangles w = 0.64 nm. The error bars are not shown to ease
visualisation. Thin lines are a guide to the eye. Vertical lines are the values of Peq
obtained by thermodynamic integration, while the vertical arrows show the values for
Psc obtained from GCMC simulations: dashed line, w = 1.64 nm; dotted line, w =

0.94 nm; solid line w = 0.64 nm.
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