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Abstract. We investigate the complexity cost of demonstrating the key types of
nonclassical correlations—Bell inequality violation, Einstein, Podolsky, Rosen
(EPR)-steering, and entanglement—with independent agents, theoretically and
in a photonic experiment. We show that the complexity cost exhibits a hierarchy
among these three tasks, mirroring the recently discovered hierarchy for how
robust they are to noise. For Bell inequality violations, the simplest test is
the well-known Clauser–Horne–Shimony–Holt test, but for EPR-steering and
entanglement the tests that involve the fewest number of detection patterns
require nonprojective measurements. The simplest EPR-steering test requires
a choice of projective measurement for one agent and a single nonprojective
measurement for the other, while the simplest entanglement test uses just a
single nonprojective measurement for each agent. In both of these cases, we
derive our inequalities using the concept of circular two-designs. This leads to
the interesting feature that in our photonic demonstrations, the correlation of
interest is independent of the angle between the linear polarizers used by the two
parties, which thus require no alignment.
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1. Introduction

Nonclassical correlations are a powerful resource for information processing, and studying them
opens a window on the true nature of the quantum world. For example, entanglement appears to
be a requirement for universal quantum computing, while violations of Bell inequalities reveal
that it is not possible to describe certain physical phenomena using any local realistic model [1].

Recently there has been significant interest in the hierarchy of nonclassical correlations.
It has been known for some time that not all entangled states are capable of violating a Bell
inequality [2]. In 2007, the Einstein–Podolsky–Rosen (EPR)-steering phenomenon was added
to this ladder of effects. EPR-steering is a formalization [3, 4] of Einstein’s ‘spooky action at a
distance’— the EPR effect [5, 6]— called ‘steering’ by Schrödinger [7]. This formalization was
achieved by turning EPR-steering into a real-world quantum information task, in which mixed
states and arbitrary (nonprojective) measurements must be considered [3, 4]. Schrödinger’s term
is appropriate because this task can be performed only if one party (Alice) demonstrates that
she can steer the state of the other party’s (Bob’s) sub-system, via her choice of measurement
setting. That is, EPR-steering is demonstrated if and only if Bob is forced to admit that he
cannot describe his system by a local quantum state unaffected by Alice’s actions. Note that
while Bob’s measurement apparatus is assumed trustworthy, just as in entanglement tests, no
assumptions are made about the apparatus that generates Alice’s declared outcomes, just as in
Bell tests.

Every Bell inequality violation is an EPR-steering demonstration (but not vice versa) and
every EPR-steering demonstration witnesses entanglement (but not vice versa). Thus these
three concepts form a logical hierarchy. Moreover, this logical hierarchy gives rise to a strict
hierarchy of states that can be used to demonstrate these nonlocal phenomena: the set of states
that can be used to demonstrate Bell-nonlocality is a strict subset of those that can manifest
EPR-steering, which is likewise a strict subset of those showing entanglement [3, 4]. Recently
this strict hierarchy has been demonstrated experimentally using a range of two-qubit Werner
states, and utilizing projective measurements [8]. It has also been extended theoretically to
higher dimensional spin systems [9]. The strict hierarchy of nonclassical correlations also
extends to the quantum information protocols they enable. For example, a Bell inequality
violation can provide device-independent security for quantum key distribution—Alice and
Bob can be certain to share a secure key, even if each of their apparatus was provided by an
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eavesdropper [10]. EPR-steering inequalities, on the other hand, enable an asymmetric form
of this security in which only Bob’s detector need be trusted [11]. In both cases, closing the
detection loophole is essential, and this was recently demonstrated for EPR-steering in a number
of photonic experiments [12–14].

One might be tempted to conclude that strict hierarchies like the above will always exist.
That is not the case, however. As shown theoretically and experimentally in [12], in the absence
of mixture, there is no strict hierarchy for loss tolerance, in the sense that EPR-steering with
no detection loophole can be demonstrated with arbitrarily low detector efficiency for Alice as
well as Bob, just as for entanglement witnessing. Another case in which the hierarchy is not
strict is the communication cost for colluding parties to simulate nonlocality. The number of
bits of classical communication required to simulate correlations demonstrating entanglement
and steering is zero, but for correlations demonstrating Bell nonlocality it is nonzero [15, 16].

It is thus nontrivial to discover a new context in which a strict hierarchy of Bell nonlocality,
EPR-steering and entanglement exists. This paper reports precisely such a discovery, and its
experimental verification. We do this not by asking what degree of purity of the state is required,
nor what tasks are enabled, but rather: how complex an experiment is required? As well as
establishing a hierarchy of complexity cost, this may have practical application in maximizing
the bandwidth in quantum information protocols, such as entanglement distribution, that require
nonlocal correlations.

To address this problem, we define the fundamental complexity ‘cost’ by the integer
W , the number of different types of detection patterns (joint detection outcomes) that must
occur. It is not a priori obvious that this will give a strict hierarchy but we find that it
does: the most parsimonious (least complex) demonstrations of entanglement, EPR-steering,
and Bell nonlocality require W = 9, 12, and 16 respectively. While the most parsimonious
test of Bell nonlocality is the standard Clauser–Horne–Shimony–Holt (CHSH) [17] test
using projective measurements, those for entanglement and EPR-steering both require
generalized (nonprojective) measurements [18]. We implement these maximally parsimonious
demonstrations experimentally using polarization-entangled photons. The demonstrations of
entanglement and EPR-steering have the interesting feature that they do not require alignment
of the polarizers between the parties: the degree of violation of the corresponding inequalities
is independent of the relative angle.

This paper is structured as follows. In section 2 we define the problem precisely and
show from very general principles that the costs for demonstrating entanglement, EPR-steering
and Bell nonlocality cannot be lower than W = 9, 12, and 16 respectively. In section 3, we
introduce a formalism, using the concept of one-designs and two-designs, to describe certain
sorts of measurements on an entangled pair of qubits. This allows us, in section 4, to construct
new nonlocality tests that prove that the above minimum W values for entanglement tests and
EPR-steering can be attained. Finally (section 5), using photonic singlet states, we demonstrate
experimentally the violation of these new inequalities using ‘trine’ measurements [18, 19], as
well as a demonstration of the standard CHSH inequality.

2. Defining the problem

Consider an experimental demonstration of some particular type of quantum nonlocality
involving P > 2 distinct parties. Let Sp > 1 be the number of different measurement settings
used by party p, and O s

p > 2 the number of possible outcomes of setting s for party p. Then the
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definition of the complexity cost is

W =

P∏
p=1

Sp∑
s=1

O s
p. (1)

In words, W is the number of possible patterns of joint detection outcomes that can occur. In
the remainder of this paper, we restrict to P = 2, and name the two parties Alice and Bob. For
P > 2 the minimum complexity cost is certainly never smaller than for P = 2, but we note that
it is an interesting open question to consider the minimum W required to demonstrate ‘genuine
multipartite quantum nonlocality’ (see e.g. [20]) of various kinds.

Note that we have taken the choice of setting each party to be independent. Dropping
this assumption allows more parsimonious tests than those we consider, but at the cost of
lowering security. Both entanglement and EPR-steering could be demonstrated by Alice and
Bob with qubits and projective measurements, with only eight possible patterns: they can
measure the correlation 〈σ̂x ⊗ σ̂x + σ̂z ⊗ σ̂z〉 if either both measure σ̂x , or both measure σ̂z.
In the absence of communication between the parties, this would require Alice and Bob to
have predetermined which of σ̂x or σ̂z they measure in each run. As stated, however, such
predetermination opens a loophole in the tests, as we now explain for the two cases. For the
case of EPR-steering, a rigorous test means that Alice is not trusted by Bob [3]. Clearly if Bob’s
settings are predetermined then Alice could trivially create a perfect correlation by sending Bob
either σ̂x eigenstates or σ̂z eigenstates, as appropriate. For the simpler case of demonstrating
entanglement both parties are considered trustworthy [3]. However, if the device supposedly
creating the entanglement is untrusted—it might be supplied by a competitor, Eve—then the
device could spy on the predetermined lists of settings and again create perfect correlations
while generating only product states. For this reason we stick to the rigorous conditions in
which the parties’ choices are independent, giving equation (1).

We first show that the values of W = 16, 12 and 9 are the minimum possible to demonstrate
Bell nonlocality, EPR-steering and entanglement, respectively. To demonstrate Bell nonlocality
it is necessary for both Alice and Bob to have measurement choices; without this it is trivial
to construct a local-hidden-variable model that explains the measurement outcomes. Thus the
most parsimonious inequality is that found originally by Bell, and refined by CHSH [17], in
which each party has two settings, and each setting has two outcomes. The Bell-nonlocality
case therefore has WB = 16. Next, for EPR-steering it is again crucial for Alice to have a
measurement choice (the task is for her to steer Bob’s state by her choice of measurement),
but Bob need not use more than one setting. However, if he uses only one setting then he cannot
use a two-outcome measurement because the two positive operators corresponding to the two
outcomes would necessarily commute, and hence be co-diagonal in some basis. Completely
decohering Bob’s system in that same basis would have no effect on his outcomes, but would
of course completely destroy any entanglement with Alice’s system and hence any possibility
of demonstrating EPR-steering. Thus the smallest cost W in this case is when Alice has two
settings with two outcomes each, and Bob has one setting with three outcomes, giving WS = 12.
Finally, for demonstrating entanglement no choice is required on either side, but with this
strategy it is necessary to have three-outcome measurements on both sides, using the same
commutation argument, yielding a minimum of WE = 9. We also note that the hierarchy is
preserved with respect to the number of measurement settings, i.e. the number of distinct
configurations of the measurement apparatus. Demonstrations of the CHSH, EPR-steering and
entanglement phenomena require 4, 2 and 1 measurement settings, respectively.
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3. Positive operator valued measures, spherical designs and the singlet correlations

Consider an arbitrary N-outcome qubit POVM (positive operator valued measure; also called
a POM [18]), {F̂k}

N
k=1 which is sharp [21, 22]. In other words, each F̂k is proportional to a

rank-one projector on the qubit Hilbert space. Each POVM element F̂k can thus be defined by a
unit-length three-vector EAk , and a positive weight ak by

F̂k = ak(1̂ + EAk · Eσ). (2)

Here 1̂ is the qubit identity operator and Eσ = (σ̂x , σ̂y, σ̂z)
> is the vector of Pauli operators. The

POVMs have the completeness condition that
∑N

k=1 F̂k = 1̂, which implies that

N∑
k=1

ak = 1,
N∑

k=1

ak EAk = E0. (3)

Equation (3) is equivalent to the mathematical statement that the set A= {ak, EAk}
N
k=1 forms

a spherical one-design [27]. A spherical one-design is the simplest case of the class of spherical
t-designs, defined for all t ∈ N. Intuitively, as t increases this means that A is a better and
better approximation to the set S of all unit vectors on the sphere S2, distributed according to
the SO(3)-Haar measure. Technically, a spherical t-design is such that all moments of order t
(obtained by averaging over the set using the weights ak) equal the corresponding moments of
the set S. The concept of t-designs has been extensively used in quantum information theory in
recent years [23–26]. In this paper we are interested only in one-designs and two-designs.

Taking the above to apply to Alice’s qubit, we likewise define POVM elements for Bob by
Êj = b j(1̂ + EB j · Eσ), with the analogous constraints on his set B= {b j , EB j}

M
j=1. We will use A

and B to denote Alice’s and Bob’s measurement.
Say Alice and Bob share the two-qubit singlet state

ρsinglet = (1/4)(1̂ ⊗ 1̂ − σ̂x ⊗ σ̂x − σ̂y ⊗ σ̂y − σ̂z ⊗ σ̂z).

From the Pauli algebra it is easy to verify that the probability for the joint outcome (k, j) is

Pk j = Tr[ρsinglet(F̂k ⊗ Êj)] = akb j(1 − EAk · EB j). (4)

Note that we are using Tr to denote a trace over a quantum Hilbert space; we reserve tr to denote
a trace over a tensor relating to three-dimensional space (see below).

We wish to consider correlations between Alice’s and Bob’s outcomes. So far we have only
labels k and j for these outcomes, but no physical reason for looking at any particular relation
between them. We could look at the entire (discrete) probability distribution Pk j , as is done
in exhaustive searches for Bell-inequality violations [28]. This is appropriate for investigating
Bell-nonlocality, a concept that makes no reference to quantum mechanical properties of the
systems. Here, however, we are interested in demonstrating other sorts of nonlocality in which
such properties do play a role, namely entanglement and EPR-steering. Thus we seek a natural
correlation function which uses the quantum physics of the problem. Rather than considering
the outcome of Alice’s measurement A to be the label k, we will consider it to be a unit vector
EA, taking values EAk corresponding to the POVM elements F̂k , and likewise for Bob. Then
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considering equation (4), the natural way to combine the two vector-valued random variables EA
and EB is to construct the correlation function

〈 EA · EB〉 =

∑
jk

Pk j EAk · EB j . (5)

Using the fact that A and B are spherical one-designs, and the singlet correlations
(equation (4)), we find that the ensemble average (5) evaluates to the simple expression

〈 EA · EB〉 = −tr [AB] , (6)

where we have defined the 3 × 3 tensor

A =

N∑
k=1

ak EAk EA>

k , (7)

and similarly for B. Note that tr A = tr B = 1 from normalization.
Now if, in addition to equation (3), A has the property that A = (1/3)I3, where I3 is the

3 × 3 identity tensor, then A forms a weighted spherical two-design on S2 [29]. The simplest
example of a spherical two-design on the two-sphere involves four equally weighted vectors EA j

pointing to the vertices of a regular terahedron.
Say that B = (1/3)I3, so that B is a weighted two-design on the sphere. Then for any one-

design (that is, any measurement) A, it follows from equation (6) that

〈 EA · EB〉 = −tr A/3 = −1/3. (8)

That is, the correlation between Alice’s and Bob’s measurement results is independent of the
weightings and three-dimensional orientation of the vectors that define their POVMs. This
supports the idea that 〈 EA · EB〉 is a natural correlation function for qubit POVMs.

To derive the most parsimonious tests of EPR-steering and entanglement we actually wish
to consider not spherical two-designs, but circular two-designs [29]. This applies if we restrict
the EAk and EB j to lying in a single plane in the Bloch sphere (say the y = 0 plane). Then B being
a circular two-design means

∑M
j=1 b j EB j EB>

j = (1/2)I2 where I2 is the 2 × 2 identity tensor (in
the x–z plane). The simplest example of a circular two-design involves three equally weighted
vectors EB j pointing to the vertices of an equilateral triangle in the x–z plane (see figure 1). The
corresponding measurement is known as a trine measurement [18, 19]. For any circular two-
design measurement by Bob, in which the EAk are restricted to the same plane, equation (8) is
replaced by

〈 EA · EB〉 = −tr A/2 = −1/2. (9)

It is still the case that the singlet correlation between Alice’s and Bob’s measurement results is
independent of the weightings and planar arrangement of the vectors, only now the degree of
correlation is higher.

From the discussions in section 2 we know that the simplest possible tests of entanglement
or EPR-steering would involve two- or three-outcome measurements. Henceforth we now
restrict, for simplicity, to the case where Bob makes a trine measurement, and Alice either
a trine measurement or two orthogonal projective measurements. Both sides’ measurements
are assumed to lie in the same plane (e.g. linear polarization measurements) but we make no
assumptions about the relative angle between Alice’s and Bob’s designs.
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Figure 1. Measurement directions. The circle represents the x–z plane of the
Bloch sphere, the dashed line shows the z-axis, vectors represent the directions
EA and EB, and different shades indicate different measurement settings. θ is the

angle between the primary measurement axes of Alice and Bob. We vary θ to
test the rotational (in)variance of the three correlation functions.

4. Quantum nonlocality tests

We first derive an entanglement test. For any single qubit state |ψ〉 with B= trine,

|〈 EB〉| =

∣∣∣∣∣∣
M∑

j=1

EB j〈ψ |Êj |ψ〉

∣∣∣∣∣∣6 1

2
. (10)

The proof is similar to that for the singlet correlations, equation (9). Thus, if Alice and Bob have
a separable state, and both make trine measurements, then

|〈 EA · EB〉|6
1

2
×

1

2
=

1

4
. (11)

But for the singlet state, using equation (9)

|〈 EA · EB〉| =
1

2
>

1

4
. (12)

Thus, equation (11) can be violated, and so is a useful witness of entanglement, attaining the
minimum WE = 9.

We can derive an EPR-steering inequality [30] in a very similar way, but with Alice using
two orthogonal (in the Bloch sphere sense) projective measurements, A and A′. We thus have,
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for any pair of Alice’s results,

| EA + EA′
|6 2 cos

π

4
=

√
2. (13)

Note that this makes no use of quantum mechanics, but is a property only of the vectorial values
of the results Alice reports. This is as required for a rigorous demonstration of EPR-steering [3].
But Bob still trusts his apparatus so under the assumption that Bob has a local quantum state
unaffected by Alice’s choice of setting, equation (10) still applies [3]. Thus for B= trine we can
derive

|〈( EA + EA′) · EB〉|6
√

2 ×
1

2
=

1
√

2
. (14)

For a singlet state, however, we have from equation (9),

|〈( EA + EA′) · EB〉| = 1>
1

√
2
. (15)

Thus, equation (14) is an EPR-steering inequality [30] that can be violated and attains the
minimum value of WS = 12.

We note finally that the CHSH inequality

|〈AB + A′B + AB ′
− A′B ′

〉|6 2, (16)

which achieves the minimum cost of WB = 16, is not of the form that we considered for
entanglement and EPR-steering; the variables A, A′, B and B ′ are not unit-vectors but rather
take the values ±1.

5. Experiment

We experimentally demonstrated the maximally parsimonious tests defined above using
photonic qubits, employing the polarization encoding |H〉 ≡ |0〉 and |V 〉 ≡ |1〉. The entangled
photons are generated from a type-I ‘sandwich’ bismuth borate spontaneous parametric
down conversion source [31]. The entangled state produced is the maximally entangled Bell
state |8+

〉 = (|00〉 + |11〉)/
√

2. We rotate |8+
〉 to the desired singlet state, |9−

〉 = (|01〉 −

|10〉)/
√

2, using standard polarizing optics; see figure 2 for details. The apparatus can be
readily reconfigured to demonstrate each nonlocality test. We also perform quantum state
tomography [32], which allows us to determine the quality of the experimentally produced
states.

The entangled state we produce has a fidelity of (97 ± 1)% with the ideal singlet, allowing
us to easily violate all of our inequalities. The slight infidelity is caused by three effects,
each making an approximately equal contribution. Imperfect collection of correlated photons
produces a small amount of symmetric (depolarization) noise. Imperfect temporal walk-off
compensation causes dephasing noise, which is not symmetric. Imperfect compensation of
unwanted birefringence leads to a small local unitary rotation of the state, away from the
symmetric singlet state. After allowing for the local unitary rotation, our experimental state
has a fidelity of 99% with the closest Werner state [2].

Each quantum nonlocality inequality requires different optical elements. To demonstrate
Bell nonlocality, by violating a CHSH inequality [17], only projective measurements are needed.
Demonstrating maximally parsimonious EPR-steering and entanglement witnesses requires at
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Figure 2. Experimental setup. Alice’s laboratory is the top rail, while Bob’s is
the bottom. A frequency-doubled mode-locked 820 nm Ti-sapphire laser with a
80 MHz repetition rate drives a type-I parametric down converter in the sandwich
configuration [31], coupled into single mode fibres (black). Fibre polarization
controllers (FPC), combined with a phase shift ϕ, rotate the entangled state to
the desired singlet state. The CHSH measurement schemes shown in figure 1
are implemented using half wave plates (HWP), quarter wave plates (QWP) and
polarizing Wollaston prisms (WP). Partially polarizing beam splitters (PPBS)
(dotted boxes) are inserted into the beam path when needed to implement the
trine measurements. The photons are filtered with 3 nm FWHM filters (F) and
then collected via multi mode fibres (grey) onto single photon counting modules
(SPCM).

least one nonprojective measurement. We simultaneously monitored all measurement outcomes,
whilst calibrating for different channel efficiencies; see figure 2 and appendix for details.

We implement the nonprojective trine measurement using the techniques of [19]. The three
POVM elements Êj are proportional to projectors onto the following three states, for the case
θ = 0 (see figure 1),

|T0〉 = |1〉 , |T±〉 = −

√
3

2
|1〉 ±

1

2
|0〉 .

Each of these states is separated by an angle of 2π
3 in the x–z plane of the Bloch sphere. The

weighting b j or a j appearing in each POVM element is 1
3 . To implement such a measurement,

a partially projecting polarizing element is added to the set-up to allow us to produce the
required projectors with the appropriate weights. Specifically, we employ a partially polarizing
beam splitters (PPBS) with transmissivities τV =

√
1/3 and τH = 1, and reflectivities rV =

√
2/3

and rH = 0. This allows us to implement the measurement 〈T0| at the reflecting port of the PPBS.
A measurement of σx is then performed using a half wave plates (HWP) at π

8 and a Wollaston
prism on the transmitted port; the two outputs represent the outcomes 〈T+| and 〈T−|. For
those cases where a two-outcome projective measurement is required (rather than a trine
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Figure 3. Alignment dependence of nonlocality measures. The top (blue), middle
(red) and bottom (black) data and curves show the dependence on θ (figure 1) of
the CHSH, EPR-steering and entanglement tests, respectively. Solid lines are the
theoretical values for a perfect singlet state, the dashed lines represent the bounds
for each nonlocal task and the points are experimentally determined values.

measurement), the PPBS is omitted. In all cases, Bob can rotate the orientation of his
measurement setting by the angle θ shown in figure 1 by using the HWP labelled θ ′ (θ ′/4 = θ )
in figure 2.

The results for each correlation function, as θ varies, can be seen in figure 3. The
inequality for the CHSH test was varied to take into account the effective relabelling of the
measurement outcomes every π/2. To do this, we replace the right-hand side of equation (16)
with max (|perm([−1, 1, 1, 1]) · [AB, A′B, AB ′, A′B ′]|). This ensures that the CHSH test is
violated for almost all values of θ , but the degree of violation depends strongly upon θ .
By contrast, the EPR-steering and separability demonstrations are observed to be almost
completely rotationally invariant. The systematic deviations from the predicted complete
rotational invariance arise predominantly from imperfections in symmetrically implementing
the rotated trine measurement. Slightly imperfect splitting ratios (errors of about 1–2%) of the
PPBS makes the experimental trine measurement slightly asymmetric. Additionally, the slightly
imperfect retardance of the half-wave plate (θ ′ in figure 2) tilts the trine measurement out of the
desired plane in Bloch space in a setting-dependent manner.

In this experiment, we violate the three correlation functions with the maximally entangled
singlet state, a Werner state with purity parameter η = 1 [2]. We do not vary η in our
demonstration of the maximally parsimonious tests because each of the correlations would
simply be scaled by η for each value of θ . We previously used Werner states to investigate
the noise tolerance (minimum value of η required) for each type of quantum nonlocality [8].
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6. Conclusion

We have shown that the complexity cost, W , of the nonlocal phenomena of Bell nonlocality,
EPR-steering and entanglement form a strict hierarchy (WB > WS > WE), reflecting the strength
of the concept of nonlocality being tested in each case [3]. We have done this by introducing new
inequalities for EPR-steering and entanglement that are the simplest possible witnesses for these
types of nonlocality. That is, a positive result confirms the effect has been seen. Note, however,
that a negative result does not necessarily mean the effect is not present in our experiment, as a
different inequality (using the same detector settings) might detect it. Moreover, for particular
classes of states it is likely that one could design equally parsimonious tests, using different
measurement settings, which would allow demonstrations of EPR-steering and entanglement
when our measurement settings do not. None of this alters the key point that no states or
measurement settings allow for tests that are more parsimonious than those we have derived
and demonstrated.

The tests we introduce for EPR-steering and entanglement could have practical application
in entanglement distribution. Because they use the minimum number of joint measurement
settings, and the minimum number of joint outcomes, it is possible that our protocols would
maximize the rate for performing these tasks. We note, however, that this would depend also
on statistical errors and the weights given to the different settings. The fact that the degree of
violation is independent of the relative orientation of the two polarizers could have technological
advantages in implementations using optical fibres. It is also of theoretical interest, showing the
application of the concepts of two-designs to quantum nonlocality.
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Appendix. Measurement efficiency

The different measurement outcomes have slightly different efficiencies due to small
experimental imperfections. These measurement channel imperfections, at the level of a few
per cent or less, include unit-to-unit variation in the efficiencies of the single photon counting
modules, and slight imbalances in fibre coupling efficiencies. The different efficiencies of the
measurement outcomes could lead to errors in the correlation function if not compensated. We
fix this problem by carefully measuring the relative efficiencies (i.e. the ratios of measurement
channel efficiencies). We post-process the measurement data to reduce the efficiency in high-
efficiency channels so that all relative measurement efficiencies are effectively the same.

The ratio of channel efficiency is defined as ηnm = ηn/ηm , where η is the efficiency
after separation on a (P)PBS into output channels n and m. The correction factor ηnm can
be calculated by measuring both σ̂x and −σ̂x , by rotating a waveplate before the splitting
device, and comparing the count rates after the eigenvectors switch channels. To apply the
correction, we take the raw counts Cn and Cm for a particular setting, then multiply Cm by ηnm

to correct for any asymmetric loss. This effectively gives both channels the same loss, ηn. This
calibration technique allows for a demonstration of the nonlocality tests whilst minimizing the
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systematic error from unbalanced channel efficiencies. The observed channel efficiency ratios
varied between 0.9 and 1.1 for all combinations of the six different output channels.
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