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Abstract. We present an improved phylogenetic factorial hidden
Markov model (FHMM) for detecting two types of mosaic structures
in DNA sequence alignments, related to (1) recombination and (2) rate
heterogeneity. The focus of the present work is on improving the mod-
elling of the latter aspect. Earlier papers have modelled different degrees
of rate heterogeneity with separate hidden states of the FHMM. This
approach fails to appreciate the intrinsic difference between two types
of rate heterogeneity: long-range regional effects, which are potentially
related to differences in the selective pressure, and the short-term peri-
odic patterns within the codons, which merely capture the signature of
the genetic code. We propose an improved model that explicitly distin-
guishes between these two effects, and we assess its performance on a set
of simulated DNA sequence alignments.

1 Introduction

DNA sequence alignments are usually not homogeneous. Mosaic structures may
result as a consequence of recombination or rate heterogeneity. Interspecific re-
combination, in which DNA subsequences are transferred between different (typ-
ically viral or bacterial) species may result in a change of the topology of the
underlying phylogenetic tree. Rate heterogeneity corresponds to a change of the
nucleotide substitution rate. Two Bayesian methods for simultaneously detecting
recombination and rate heterogeneity in DNA sequence alignments are the dual
multiple change-point model (DMCP) of [13], and the phylogenetic factorial hid-
den Markov model (PFHMM) of [9] and [12]. The idea underlying the DMCP is
to segment the DNA sequence alignment by the insertion of change-points, and
to infer different phylogenetic trees and nucleotide substitution rates for the sep-
arate segments thus obtained. Two separate change-point processes associated
with the tree topology and the nucleotide substitution rate are employed. Infer-
ence is carried out in a Bayesian way with reversible jump (RJ) Markov chain
Monte Carlo (MCMC). Of particular interest are the number and locations of
the change-points, which mark putative recombination break-points and regions
putatively under different selective pressures. A related modelling paradigm is
provided by the PFHMM, where two a priori independent hidden Markov chains
are introduced, whose states represent the tree topology and nucleotide substi-
tution rate, respectively. While the earlier work of [9] kept the number of hidden
�� This work was funded by RERAD of the Scottish Government.



2

states fixed, [12] generalised the inference procedure with RJMCMC and showed
that this framework subsumes the DMCP as a special case. This model has re-
cently been extended to larger numbers of species [16].

Common to all these models are two simplifications. First, the no-common
mechanism model of [15] is introduced, which assumes separate branch lengths
for each site in the DNA sequence alignment. Second, there is no distinction
between regional and within-codon rate heterogeneity. Following [14], the first
assumption was introduced with the objective to reduce the computational com-
plexity of the inference scheme. The no-common-mechanism model allows the
branch lengths to be integrated out analytically. This is convenient, as the
marginal likelihood of the tree topology, the nucleotide substitution rate, and
further parameters of the nucleotide substitution model (like the transition-
transversion ratio) can be computed in closed from. In this way, the computa-
tional complexity of sampling break-points (DMCP) or hidden state sequences
(PFHMM) from the posterior distribution with MCMC is substantially reduced.
However, in the no-common-mechanism model the branch lengths are incidental
rather than structural parameters. As we discussed in [10], this implies that max-
imum likelihood no longer provides a consistent estimator, and that the method
systematically infers the wrong tree topology in the Felsenstein zone defined in
[3]. The second simplification does not distinguish between two different types of
rate heterogeneity: (1) a regional effect, where larger consecutive segments of the
DNA sequence alignment might be differently evolved, e.g. as a consequence of
changes of the selective pressure; (2) and a codon effect, where the third codon
position shows more variation than the first or the second. Not allowing for this
difference and treating both sources of rate heterogeneity on an equal footing
implies the risk that subtle regional effects might be obscured by the short-range
codon effect, as discussed in [12]. The latter effect is of no biological interest,
though, as it only represents the signature of the genetic code.

In the present work, we address this issue and develop a model that properly
distinguishes between these two effects. Our work is based on the model we
introduced in [10]. We modify this approach so as to explicitly take the signature
of the genetic code into account. In this way, the within-codon effect of rate
heterogeneity is imposed on the model a priori, which makes it easier to learn
the biologically more interesting effect of regional rate heterogeneity a posteriori.

2 Methodology

2.1 Modelling recombination and rate heterogeneity with a
phylogenetic FHMM

Consider an alignment D of m DNA sequences, N nucleotides long. Let each
column in the alignment be represented by yt, where the subscript t represents
the site, 1 ≤ t ≤ N . Hence yt is an m-dimensional column vector containing
the nucleotides at the tth site of the alignment, and D = (y1, . . . ,yN ). Given a
probabilistic model of nucleotide substitutions based on a homogeneous Markov
chain with instantaneous rate matrix Q, a phylogenetic tree topology S, and a
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vector of branch lengths w, the probability of each column yt, P (yt|S,w,θ), can
be computed, as e.g. discussed in [4]. Here, θ denotes a (vector) of free nucleotide
substitution parameters extracted from Q. For instance, for the HKY85 model
of [7], we have π = (πA, πC , πG, πT ), with πi ∈ [0, 1] and

∑
i πi = 1, is a vector

of nucleotide equilibrium frequencies, and α, β ≥ 0 are separate nucleotide sub-
stitution rates for transitions and transversions. For identifiability between w
and Q, the constraint

∑
i Qiiπi = −1 is commonly introduced, which allows the

branch lengths to be interpreted as expected numbers of mutations per site (see,
e.g., [13]). The normalisation constraint on π further reduces the number of free
parameters by one, so that without loss of generality we have θ = (πA, πC , πG, ζ),
where ζ = α/(2β) ≥ 0 is the transition-transversion ratio. In what follows, we
do not make the dependence on θ explicit in our notation.

We simultaneously model recombination and rate heterogeneity with a phy-
logenetic FHMM, as originally proposed in [9], with the modification discussed in
[10]. A hidden variable St ∈ {τ1, . . . , τK} is introduced, which represents one out
of K possible tree topologies τi at site t. To allow for correlations between nearby
sites – while keeping the computational complexity limited – a Markovian depen-
dence structure is introduced: P (S) = P (S1, . . . , SN ) =

∏N
t=2 P (St|St−1)P (S1).

Following [5], the transition probabilities are defined as

P (St|St−1, νS) = ν
δ(St,St−1)
S

(
1 − νS

K − 1

)[1−δ(St,St−1)]

(1)

where δ(St, St−1) denotes the Kronecker delta symbol, which is 1 when St =
St−1, and 0 otherwise. The parameter νS denotes the probability of not chang-
ing the tree topology between adjacent sites. Associated with each tree topology
τi is a vector of branch lengths, wτi

, which defines the probability of a col-
umn of nucleotides, P (yt|St,wSt

). The practical computation follows standard
methodology based on the pruning algorithm [4]. For notational convenience we
rewrite these emission probabilities as P (yt|St,w), where St ∈ {τ1, . . . , τk} de-
termines which of the subvectors w = (w1, . . . ,wK) is selected. To model rate
heterogeneity, a second type of hidden states Rt is introduced. Correlations be-
tween adjacent sites are modelled again by a Markovian dependence structure:
P (R) = P (R1, . . . , RN ) =

∏N
t=2 P (Rt|Rt−1)P (R1). The transition probabilities

are defined as in (1):

P (Rt|Rt−1, νR) = ν
δ(Rt,Rt−1)
R

(
1 − νR

K̃ − 1

)[1−δ(Rt,Rt−1)]

(2)

where K̃ is the total number of different rate states. Each rate state is associated
with a scaling parameter Rt ∈ ρ = {ρ1, . . . , ρK′} by which the branch lengths
are rescaled: P (yt|St,w) → P (yt|St, Rtw). To ensure that the model is identifi-
able, we constrain the L1-norm of the branch length vectors to be equal to one:
||wk||1 = 1 for k = 1, . . . ,K. To complete the specification of the probabilistic
model, we introduce prior probabilities on the transition parameters νS and νR,
which are given conjugate beta distributions (which subsume the uniform dis-
tribution for the uninformative case). The initial state probabilities P (S1) and
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P (R1) are set to the uniform distribution, as in [11]. The prediction of recom-
bination break-points and rate heterogeneity is based on the marginal posterior
probabilities

P (St|D) =
∑
S1

. . .
∑
St−1

∑
St+1

. . .
∑
SN

P (S|D) (3)

P (Rt|D) =
∑
R1

. . .
∑
Rt−1

∑
Rt+1

. . .
∑
RN

P (R|D) (4)

The distributions P (S|D) and P (R|D) are obtained by the marginalisation

P (S|D) =
∑
R

∫
P (S,R, νS , νR,w|D)dνSdνRdw (5)

P (R|D) =
∑
S

∫
P (R,S, νS , νR,w|D)dνSdνRdw (6)

where P (S,R, νS , νR,w|D) ∝ P (D,S,R, νS , νR,w) = P (S1)P (R1)P (νS)P (νR)∏N
t=1 P (yt|St, Rtw)

∏N
t=2 P (St|St−1, νS)

∏N
t=2 P (Rt|Rt−1, νR). The respective

integrations and summations are intractable and have to be numerically ap-
proximated with Markov chain Monte Carlo (MCMC): we sample from the joint
posterior distribution P (S,R, νS , νR,w|D) and then marginalise with respect to
the entities of interest. Sampling from the joint posterior distribution follows a
Gibbs sampling procedure [2], where each parameter group is iteratively sam-
pled separately conditional on the others. So if the superscript (i) denotes the
ith sample of the Markov chain, we obtain the (i + 1)th sample as follows:

S(i+1) ∼ P (·|R(i), ν
(i)
S , ν

(i)
R ,w(i),D) (7)

R(i+1) ∼ P (·|S(i+1), ν
(i)
S , ν

(i)
R ,w(i),D) (8)

ν
(i+1)
S ∼ P (·|S(i+1),R(i+1), ν

(i)
R ,w(i),D) (9)

ν
(i+1)
R ∼ P (·|S(i+1),R(i+1), ν

(i+1)
S ,w(i),D) (10)

w(i+1) ∼ P (·|S(i+1),R(i+1), ν
(i+1)
S , ν

(i+1)
R ,D) (11)

The order of these sampling steps is arbitrary. Note that, in principle, the nu-
cleotide substitution parameters θ should be included in the Gibbs scheme, as
described in [11]. In practice, a fixation of θ at a priori estimated values makes
little difference to the prediction of P (St|D) and P (Rt|D) and has the advantage
of reduced computational costs. Sampling the hidden state sequences S and R
in (7) and (8) is effected with the stochastic forward-backward algorithm of [1].
Sampling the transition probabilities νS and νR in (9) and (10) is straightforward
due to the conjugacy of the beta distribution. Sampling the branch lengths in
(11) cannot be effected from a closed-form distribution, and we have to resort to
a Metropolis-Hastings-within-Gibbs scheme. Note that the branch lengths have
to satisfy the constraint ||wk||1 = 1, k = 1, . . . ,K, as well as the positivity con-
straint wki ≥ 0. This is automatically guaranteed when proposing new branch
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length vectors w∗
k from a Dirichlet distribution: Q(w∗

k|wk) ∝ ∏
i[w

∗
ki]

αwki−1,
where α is a tuning parameter that can be adapted during burn-in to improve
mixing. The acceptance probability for the proposed branch lengths is then given
by the standard Metropolis-Hastings criterion [8].

2.2 Distinguishing regional from within-codon rate heterogeneity

We improve the model described in the previous subsection, which was pro-
posed in [10], in two respects. First, we adapt ρ and sample it along with
w from the posterior distribution. To make this explicit in the notation, we
slightly change the definition of the rate state as Rt ∈ {1, . . . , K ′} and rewrite:
P (yt|St, Rtw) → P (yt|St, ρRt

w). Second, we explicitly model codon-position-
specific rate heterogeneity in a way similar to [5]. To this end, we introduce
the indicator variable It ∈ {0, 1, 2, 3}, where It = 0 indicates that the tth po-
sition of the alignment does not code for protein, and It = i ∈ {1, 2, 3} in-
dicates that site t is the ith position of a codon. Each of the four categories
is associated with a positive factor taken from λ = (λ0, λ1, λ2, λ3), by which
the branch lengths are modulated. The emission probabilities are thus given
by P̃ (yt|St, Rt, It,ρ,λ,w) := P (yt|St, ρRt

λIt
w), where P (.) was defined below

equation (1), and P̃ (.) makes the dependence on ρ and λ explicit. Note that as
opposed to [5], we do not keep λ fixed, but sample it from the posterior distribu-
tion with MCMC. For identifiability we introduce the same constraint as for the
branch lengths: ||λ||1 = 1, which is automatically guaranteed when proposing
λ from a Dirichlet distribution. Hence, to sample ρ and λ from the posterior
distribution P (S,R, νS , νR,ρ,λ,w|D), we have to add two Metropolis-Hastings-
within-Gibbs steps akin to equation (11) to the Gibbs sampling procedure (7-11):

[ρ(i+1),λ(i+1)] ∼ P (·|S(i+1),R(i+1), ν
(i+1)
S , ν

(i+1)
R ,w(i+1),D) (12)

With all other parameters and hidden states fixed, we propose new values for ρ
and λ, and accept or reject according to the Metropolis-Hastings criterion. As
discussed above, we propose new values for λ from a Dirichlet distribution. New
values for ρ are proposed from a uniform distribution (on the log scale), centred
on the current values. The dispersal parameters of the proposal distributions can
be adjusted during the burn-in phase using standard criteria.

3 Data

To assess the performance of the method, we tested it on synthetic DNA
sequence alignments; this has the advantage that we have a known gold-
standard. For a realistic simulation, we generated sequence alignments with
Seq-Gen, developed by Rambaut and Grassly. This software package is widely
used for Monte Carlo simulations of molecular sequence evolution along
phylogenetic trees; see e.g. http://bioweb2.pasteur.fr/docs/seq-gen/ or
http://tree.bio.ed.ac.uk/software/seqgen/ for details. We generated a
DNA sequence alignment from a phylogenetic tree of four hypothetical taxa
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a)

b)

Fig. 1. Illustration of regional versus within-codon rate heterogeneity. Each circle cor-
responds to a nucleotide in a DNA sequence, and the circle diameter symbolises the
average nucleotide substitution rate at the respective position. The top panel (a) shows
a “homogeneous” DNA sequence composed of six codons, where each third position is
more diverged as a consequence of the nature of the genetic code. The bottom panel
(b) shows a hypothetical DNA sequence subject to regional rate heterogeneity, where
the second half on the right of the dashed vertical line constitutes a region that is more
evolved. The sequences used in our simulation study were similar, but longer (1.5Kbp).

with equal branch lengths, using the HKY model of nucleotide substitution [7]
with a uniform nucleotide equilibrium distribution, πA = πC = πG = πT = 0.25,
and a transition-transversion ratio of ζ = 2. We generated two types of align-
ments. In the first alignment, the normalised branch lengths associated with the
three codon positions were set to wi = [0.5 − c

2 , 0.5 − c
2 , 0.5 + c]/1.5, where the

codon offset parameter 0 ≤ c ≤ 0.99 was varied in increments of 0.1. All codons
had the same structure, as illustrated in Figure 1a. We refer to these sequence
alignments as “homogeneous”. The second type of alignment, which we refer to
as “heterogeneous” or “subject to regional rate heterogeneity”, is illustrated in
Figure 1b. The codons have a similar structure as before. The second half of the
alignment is more evolved, though, and the branch lengths are expanded by a
factor of ς = 2. In all simulations, the total length of the alignment was 1.5 Kbp.

4 Simulations

Our objective is to sample topology and rate state sequences S,R, their as-
sociated transition probabilities νS , νR and rate vectors ρ, the branch lengths
w and (for the new model) the within-codon rate vector λ from the poste-
rior distribution P (S,R, νS , νR,ρ,λ,w|D). To this end, we apply the Gibbs
sampling scheme of (7–12), which we have described in Sections 2.1 and 2.2.
Our current software has not yet been optimised for speed. Hence, to im-
prove the convergence of the Markov chain and to focus on the aspect of in-
terest for the present study (rate heterogeneity), we have set all states in S
to the same tree topology without allowing for recombination: νS = 1. We
also set K ′ = 2 fixed. The model was initialised with the maximum likeli-
hood tree obtained with DNAML from Felsentein’s PHYLIP package, available
from http://evolution.genetics.washington.edu/phylip/. We tested the
convergence of the MCMC simulations by computing the potential scale reduc-
tion factor of Gelman and Rubin [6] from the within and between trajectory
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variances of various monitoring quantities (e.g. w, P (Rt|D), etc.), and took a
value of 1.2 as an indication of sufficient convergence.

The main objective of our study is to evaluate the performance of the pro-
posed model that allows for within-codon rate heterogeneity; we refer to this as
the “new” model. We compare its performance with a model that does not in-
clude within-codon rate heterogeneity, that is, where λ = 1 is constant. We refer
to this as the “old” model. Note that the latter model is equivalent to the one
proposed in [10], but with the improvement that ρ is sampled from the posterior
distribution, rather than kept fixed.

In order to evaluate the performance of the methods, we want to compute
the marginal posterior probability of the average effective branch length scaling
for the three codon positions. The effective branch lengths are given by w̃t =
ρRt

λIt
wt, where wt are the normalised branch lengths. The entity of interest is

Υt =
||w̃t||1
||wt||1 = ρRt

λIt
(13)

which is the scaling factor by which the branch length vector w̃t associated with
position t deviates from the normalised branch lengths wt. Note that Υt is com-
posed of two terms, associated with a region (ρRt

) and a codon (λIt
) effect. We

are interested in the marginal posterior distribution of this factor, P (Υ |D, I = k),
for the three codon positions I ∈ {1, 2, 3}. In practice, this distribution is esti-
mated from the MCMC sample by the appropriate marginalisation with respect
to all other quantities:

P (Υ |D, I = k) ≈
∑M

i=1

∑N
t=1 δIt,kδ(Υ − ρi

Ri
t
λi

It
)

M
∑N

t=1 δIt,k

(14)

where the subscript t refers to positions in the alignment (of total length N),
the superscript i refers to MCMC samples (sample size M), δ(.) is the delta
function, the quantities on the right of its argument, ρi

Ri
t
, λi

It
, are obtained from

the MCMC sample, and δi,k is the Kronecker delta. For the conventional model
without explicit codon effect, we set λIt

= 1/3∀t.

5 Results

Figure 2 shows the posterior distribution of the (complementary) transition prob-
ability νR. The two models were applied to the “homogeneous” DNA sequence
alignment that corresponds to the top panel in Figure 1. The left panel shows
the results obtained with the old model, which does not explicitly include the
codon effect. For small values of the offset parameter c, the posterior distribution
of νR is concentrated on νR = 1, which corresponds to a homogeneous sequence
alignment. As the offset increases, the posterior distribution of νR gets shifted to
smaller values, with a mode at νR = 0.5. Note that νR is related to the average
segment length l via the relation l = (1 − νR)

∑
l lν

l−1
R = (1 − νR) d

dνR

∑
l ν

l
R =

(1−νR) d
dνR

1
1−νR

= 1
1−νR

. For νR = 0.5 we get l = 2. The model has thus learned
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Fig. 2. Posterior distribution of νR (vertical axis) for different codon offsets c (hori-
zontal axis), where the offset indicates to what extent the nucleotide substitution rate
associated with the third codon position is increased over that of the first two positions.
The left panel (a) shows the results obtained with the old model, the centre panel (b)
shows the results obtained with the new model. The grey levels represent probabilities,
as indicated by the legend in the panel on the right (c). The distributions were obtained
from a “homogeneous” DNA sequence alignment, corresponding to Figure 1a.
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Fig. 3. Posterior distribution (vertical axes) of the combined rate Υt (horizontal axes),
defined in equation (13), for a “homogeneous” DNA sequence alignment, corresponding
to Figure 1a, with codon offset parameter c = 0.8. The three columns correspond to
the three codon positions. The top row shows the distribution obtained with the old
model. The bottom row shows the distribution obtained with the new model. The
distributions were obtained from the MCMC samples with a kernel density estimator,
where the delta function in (14) was replaced by a Gaussian (standard deviation: a
tenth of the total range).
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Fig. 4. Posterior distribution (vertical axes) of the rate ρRt (horizontal axes) for a
“heterogeneous” DNA sequence alignment, corresponding to Figure 1b, with codon
offset parameter c = 0.8 and regional factor ς = 2. The three columns correspond
to the three codon positions. The top row shows the distribution obtained with the
old model. The bottom row shows the distribution obtained with new model. The
distributions were obtained from the MCMC samples with a kernel density estimator,
where the delta function in (15) was replaced by a Gaussian (standard deviation: a
tenth of the total range).
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Fig. 5. Alternative representation of the posterior distribution (vertical axes) of the
rate ρRt (horizontal axes) for the “heterogeneous” DNA sequence alignment. The fig-
ure corresponds to Figure 4, but shows a separation of the distributions with respect
to regions rather than codon positions. The distribution of ρRt is defined in (16). The
two columns correspond to the two differently diverged segments in the DNA sequence
alignments, with the left column representing the first 750 positions, and the right
column representing the last 750 positions; the latter were evolved at double the nu-
cleotide substitution rate. The two rows correspond to the two models. The top row
shows the distribution obtained with the old model. The bottom row shows the dis-
tribution obtained with new model. The distributions were obtained from the MCMC
samples with a kernel density estimator, where the delta function in (16) was replaced
by a Gaussian (standard deviation: a tenth of the total range).
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the within-codon rate heterogeneity intrinsic to the genetic code; compare with
Figure 1. The right panel of Figure 2 shows the posterior distribution of νR

obtained with the new model. Irrespective of the codon offset c, the distribu-
tion is always concentrated on νR = 1. This correctly indicates that there is
no regional rate heterogeneity in the DNA sequence alignment. Recall that the
within-codon rate heterogeneity has been explicitly incorporated into the new
model and, hence, need not be learned separately via νR and transitions between
rate states Rt.

Figure 3 shows the posterior distribution of the scaling factor Υt, defined
in (13), for the “homogeneous” DNA sequence alignment corresponding to Fig-
ure 1a. The columns in Figure 3 correspond to the three codon positions. The
posterior distribution was obtained from the MCMC samples via (14). For the
new model (bottom row of Figure 3), the distributions of Υt are unimodal and
sharply peaked. This is consistent with the fact that we have no regional rate
heterogeneity, and the shift in the peak locations for the third codon position
clearly indicates the within-codon rate heterogeneity. For the old model (top
panel of Figure 3), the posterior distribution is always bimodal. This is a con-
sequence of the fact that the within-codon rate heterogeneity has to be learned
via the assignment of rate states Rt to the respective codon positions. The bi-
modality and increased width of the distribution stem from a misassignment of
rate states. Note that for an alignment of N = 1500 sites, 500 state transitions
have to be learned to model the within-codon rate heterogeneity correctly.

Figure 4 is similar to Figure 3, but was obtained for the heterogeneous DNA
sequence alignment corresponding to Figure 1b. For better clarity we have shown
the codon site-specific posterior distributions of the rate ρRt

rather than the scale
factor Υt, that is, in equation (14) we have ignored the factor λi

It
:

P (ρ|D, I = k) ≈
∑M

i=1

∑N
t=1 δIt,kδ(ρ − ρi

Ri
t
)

M
∑N

t=1 δIt,k

(15)

The bottom row shows the distributions obtained with the new model. They
have a symmetric bimodal form. The bimodality reflects the regional rate het-
erogeneity. The symmetry reflects the nature of the DNA sequence alignment,
which contains two differently diverged regions of equal size (see Figure 1b). The
top panel shows the distributions obtained with the old model. The distributions
are still bimodal, but the symmetry has been destroyed. This distortion results
from the fact that two effects – regional and within-codon rate heterogeneity –
are modelled via the same mechanism: the rate states Rt. Consequently, these
two forms of rate heterogeneity are not clearly separated.

To illustrate this effect from a different perspective, Figure 5 shows the pos-
terior distributions of the rate ρRt

not separated according to codon positions,
but according to differently diverged regions. That is, from the MCMC sample
we compute the following distribution:

P (ρ|D, t ∈ r) ≈
∑M

i=1

∑N
t=1 I(t ∈ r)δ(ρ − ρi

Ri
t
)

M
∑N

t=1 I(t ∈ r)
(16)
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where r represents the two regions: r = 1 for 1 ≤ t ≤ 750, and r = 2 for 751 ≤ t ≤
1500, I(t ∈ r) is the indicator function, which is one if the argument is true, and
zero otherwise, and the remaining symbols are as defined below equation (14).
The bottom panel shows the distributions obtained with the new model, where
the two columns represent the two regions. The distributions are unimodal and
clearly separated, which indicates that modelling regional rate heterogeneity
is properly disentangled from the within-codon rate variation. The top panel
shows the distributions obtained with the old model. Here, the distributions are
bimodal, which results from a lack of separation between regional and within-
codon rate heterogeneity, and a tangling-up of these two effects.

6 Discussion

We have generalised the phylogenetic FHMM of [10] in two respects. First, by
sampling the rate vector ρ from the posterior distribution with MCMC (rather
than keeping it fixed) we have made the modelling of regional rate heterogeneity
more flexible. Second, we explicitly model within-codon rate heterogeneity via
a separate rate modification vector λ. In this way, the within-codon effect of
rate heterogeneity is imposed on the model a priori, which should facilitate the
learning of the biologically more interesting effect of regional rate heterogene-
ity a posteriori. We have carried out simulations on synthetic DNA sequence
alignments, which have borne out our conjecture. The old model, which does
not explicitly include the within-codon rate variation, has to model both effects
with the same mechanism: the rate states Rt with associated rate factors ρRt

. As
expected, it was found to fail to disentangle these two effects. On the contrary,
the new model was found to clearly separate within-codon from regional rate
heterogeneity, resulting in a more accurate prediction.

We emphasise that our paper describes work in progress, and we have not
yet applied our method to real DNA sequence alignments. This is partly a con-
sequence of the fact that our software has not been optimised for computational
efficiency yet, resulting in long MCMC simulation runs. Note that the compu-
tational complexity of our algorithm is larger than for the model described in
[12]. The latter approach is based on the no-common-mechanism model of [15],
which leads to a substantial model simplification, though at the price of poten-
tial inconsistency problems (as discussed in [10]). The increased computational
complexity of the method proposed in the present article might require the ap-
plication of more sophisticated MCMC schemes, e.g. population MCMC, which
will be the objective of our future work.

As a final remark, we note that a conceptually superior approach would
be the modelling of substitution processes at the codon rather than nucleotide
level. However, the application of this approach to standard Bayesian analysis
of single phylogenetic trees has turned out to be computationally exorbitant. A
generalisation to phylogenetic FHMMs for modelling DNA mosaic structures,
as described in the present article, is unlikely to be computationally feasible in
the near future. We therefore believe that the method we have proposed, which
is based on individual nucleotide substitution processes while taking the codon
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structure into account, promises a better compromise between model accuracy
and practical viability.
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