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Abstract

We address a potential shortcoming of three probabilistic models for detecting
interspecific recombination in DNA sequence alignments: the multiple change-
point model (MCP) of Suchard et al. (2003), the dual multiple change-point
model (DMCP) of Minin et al. (2005), and the phylogenetic factorial hidden
Markov model (PFHMM) of Husmeier (2005). These models are based on the
Bayesian paradigm, which requires the solution of an integral over the space
of branch lengths. To render this integration analytically tractable, all three
models make the same assumption that the vectors of branch lengths of the phy-
logenetic tree are independent among sites. While this approximation reduces
the computational complexity considerably, we show that it leads to the sys-
tematic prediction of spurious topology changes in the Felsenstein zone, that is,
the area in the branch lengths configuration space where maximum parsimony
consistently infers the wrong topology due to long-branch attraction. We apply
two Bayesian hypothesis tests, based on an inter- and an intra-model approach
to estimating the marginal likelihood. We then propose a revised model that
addresses these shortcomings, and compare it with the aforementioned models
on a set of synthetic DNA sequence alignments systematically generated around
the Felsenstein zone.
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1 Introduction

The underlying assumption of most phylogenetic tree reconstruction methods is that
there is one set of hierarchical relationships among the taxa. While this is a reason-
able approach when applied to most DNA sequence alignments, it can be violated in
certain bacteria and viruses due to interspecific recombination. The resulting trans-
fer or exchange of DNA sub-sequences can lead to a change of the branching order
(topology) in the affected region, which results in conflicting phylogenetic informa-
tion from different regions of the alignment. If undetected, the presence of these
so-called mosaic sequences can lead to systematic errors in phylogenetic tree esti-
mation. Their detection, therefore, is a crucial prerequisite for consistently inferring
the evolutionary history of a set of taxa.

The present work is related to three recent Bayesian methods for detecting recom-
bination in DNA sequence alignments: the multiple change-point model (MCP) of
Suchard et al. (2003), the dual multiple change-point model (DMCP) of Minin et al.

(2005), and the phylogenetic factorial hidden Markov model (PFHMM) of Husmeier
(2005). The idea underlying the MCP is to segment the DNA sequence alignment
by the insertion of change points, and to infer different phylogenetic trees and nu-
cleotide substitution rates for the separate segments thus obtained. Inference is
carried out in a Bayesian way. Of particular interest are the number and locations
of the change points, which mark putative recombination breakpoints. Starting from
a truncated Poisson prior, the number of change points is sampled from the poste-
rior distribution with reversible jump (RJ) Markov chain Monte Carlo (MCMC). A
disadvantage of this approach is the inability of the model to distinguish between
recombination and rate heterogeneity. This shortcoming is addressed in the DMCP,
where two separate change-point processes associated with the phylogenetic tree
topology and the nucleotide substitution rate are employed. A related but different
modelling paradigm is provided by the PFHMM, where two a priori independent
hidden Markov chains are introduced, whose states represent the tree topology and
nucleotide substitution rate, respectively. The three models described above have
one feature in common: different sites in the sequence alignment are associated with
separate branch lengths, which allows the latter to be integrated out analytically.
This is convenient, as the marginal likelihood of the tree topology, the nucleotide
substitution rate, and further parameters of the nucleotide substitution model (like
the transition- transversion ratio) can be computed in closed from. In this way,
the computational complexity of sampling break points (MCP,DMCP) or hidden
state sequences (PFHMM) from the posterior distribution with MCMC is substan-
tially reduced. The subject of the present work is to investigate the effect of the
approximation on which the analytic integration of the branch lengths is based. We
will demonstrate that as a consequence of this approximation, the resulting model
may predict spurious topology changes. A clearer analysis of the underlying ap-
proximation reveals that the resulting model exhibits a behaviour very similar to
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maximum parsimony, and that it is intrinsically susceptible to the systematic fail-
ure in the Felsenstein zone (Felsenstein, 1978). We propose a modification of the
PFHMM without the aforementioned distributional approximation for the branch
lengths. This modification increases the computational complexity of the inference
scheme, as the branch lengths have now to be numerically sampled from the pos-
terior distribution. However, we demonstrate that the resulting model will avoid
the prediction of spurious topology changes in the Felsenstein zone, and thereby
increases the accuracy of detecting recombination in DNA sequence alignments.

2 Methods

Consider an alignment D of m DNA sequences, N nucleotides long. Let each column
in the alignment be represented by yt, where the subscript t represents the site,
1 ≤ t ≤ N . Hence yt is an m-dimensional column vector containing the nucleotides
at the t site of the alignment, and D = (y1, . . . ,yN ). Given a probabilistic model of
nucleotide substitutions based on a homogeneous Markov chain with instantaneous
rate matrix Q, a phylogenetic tree topology S, and a vector of branch lengths w, the
probability of each column yt, P (yt|S,w,θ), can be computed, as e.g. discussed in
Husmeier et al. (2005a). Here, θ denotes a (vector) of free nucleotide substitution
parameters extracted from Q. For instance, for the HKY85 model of Hasegawa et al.

(1985), we have

Q =









. απG βπC βπT

απA . βπC βπT

βπA βπG . απT

βπA βπG απC .









(1)

where the dot in each row represents the additive inverse of the sum of the remaining
elements in that row, π = (πA, πC , πG, πT ), with πi ∈ [0, 1] and

∑

i πi = 1, is a
vector of nucleotide equilibrium frequencies, and α, β ≥ 0 are separate nucleotide
substitution rates for transitions and transversions. For identifiability between w

and Q, the constraint
∑

iQiiπi = −1 is commonly introduced, which allows the
branch lengths to be interpreted as expected numbers of mutations per site (see,
e.g., Minin et al. (2005)). The normalization constraint on π further reduces the
number of free parameters by one, so that without loss of generality we have θ =
(πA, πC , πG, τ), where τ = α/β ≥ 0 is the transition-transversion ratio.

A Bayesian approach to phylogenetics without recombination was proposed and
tested in Yang and Rannala (1997) and Larget and Simon (1999), where the objec-
tive is to sample the tree topology S, the branch lengths w, and the parameters of
the nucleotide substitution model, θ, from the posterior distribution P (w, S,θ|D)
with MCMC. Generalizing this scheme to the presence of recombination requires
replacing the single topology-indicating variable S by a sequence of topologies,
S = (S1, . . . , SN ), where St (the ‘state’ at site t) represents the tree topology at
site t. Each state St ∈ {1, . . . ,K} can have a different vector of branch lengths,
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wSt , and nucleotide substitution parameters, θSt . To simplify the notation, we
introduce the accumulated vectors w = (w1, . . . ,wK) and θ = (θ1, . . . ,θK) and
define: P (yt|St,wSt ,θSt) = P (yt|St,w,θ). This means that St indicates which
subvectors of w and θ apply.

Since a tree topology may change as a result of recombination, which corresponds
to a transition into another state St at the breakpoint t of the affected region,
our main objective is the prediction of the state sequence S = (S1, . . . , SN ). This
prediction should be based on the posterior probability P (St|D), which requires a
marginalization over the other states

P (St|D) =
∑

S1

. . .
∑

St−1

∑

St+1

. . .
∑

SN

P (S|D) (2)

and the remaining parameters to be integrating out:

P (S|D) =

∫

P (S,w,θ|D)dwdθ (3)

Alternatively, if the objective is to detect only the location of recombination break-
points without explicitly inferring the tree topologies in the different regions of the
alignment, then the state sequences become nuisance parameters that have to be
marginalized over. In practice this is effected by the introduction of a breakpoint de-
tection operator, B, which is a function of the state sequence, S, and then obtaining
the posterior probabilities of the breakpoints by summing over the state sequences:

P (B|D) =
∑

S

P (B|S)P (S|D)

The assumption made for all three models discussed in Section 1 – MCP, DMCP and
PFHMM – is that the integral over the branch lengths w can be solved analytically.
We will revisit this point in Section 2.4, after briefly summarizing the main ideas
behind the three methods first.

2.1 Multiple change-point model (MCP)

In the MCP model, each state St ∈ {1, . . . ,K} in S = (S1, . . . , SN ) represents
a different tree topology. A separate vector of nucleotide substitution parameters
θk, k ∈ {1, . . . ,K}, and an overall divergence hyperparameter ρk, k ∈ {1, . . . ,K}, is
associated with each state. As we will show later, in equation (13) and Section 2.4,
the hyperparameter ρk defines the prior distribution of the branch lengths. The
posterior probability is obtained from Bayes rule

P (S,θ,ρ,K|D) ∝ P (D|S,θ,ρ,K)P (S)P (θ)P (ρ)P (K) (4)

and requires the specification of various prior distributions. Note that the branch
lengths w have been integrated out analytically. The prior on the number of states
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K is chosen to be a truncated Poisson distribution. For P (ρ) a factorizable prior
P (ρ) =

∏

k P (ρk) is assumed, where each P (ρk) is taken to be an exponential
distribution. For P (θ) a similar factorization is made: P (θ) =

∏

k P (θk). The
nucleotide substitution model chosen in Suchard et al. (2003) is the HKY85 model of
(Hasegawa et al., 1985), where the nucleotide equilibrium frequencies are kept fixed,
estimated from the whole DNA sequence alignment. Hence each θk corresponds to
a single parameter, the transition-transversion ratio, and P (θk) is chosen to be the
exponential distribution again. Finally, a change-point process is chosen as the
prior on P (S). The posterior probability over the state assignments is, in principle,
obtained by marginalization

P (S|D) =
∑

K

∫ ∫

P (S,θ,ρ,K|D)dθdρ (5)

from which the prediction of topology changes is obtained by further marginalization,
e.g. according to equation (2). In practice, the integral in (5) is intractable and is
approximated by sampling state sequences S and model parameters θ,ρ and K
approximately from the posterior distribution of equation (4) with reversible jump
Markov chain Monte Carlo (RJMCMC).

2.2 Dual multiple change-point model (DMCP)

A disadvantage of the MCP model is its inability to distinguish between recom-
bination and rate heterogeneity. This shortcoming is addressed in the DMCP
model of Minin et al. (2005), where two separate change point processes associ-
ated with the phylogenetic tree topology and the nucleotide substitution rate are
employed. Let S = (S1, . . . , SN ) denote, as before, a hidden state sequence in
which each state St ∈ {1, . . . ,K} is associated with a phylogenetic tree topol-
ogy. Denote by R = (R1, . . . , RN ) a separate hidden state sequence in which
each hidden state Rt ∈ {1, . . . ,K

′} is associated with a divergence hyperparam-
eter ρk′ , k′ ∈ {1, . . . ,K ′}, and a (vector of) nucleotide substitution parameter(s)
θk′ , k′ ∈ {1, . . . ,K ′}. Like P (S), the prior on R, P (R), is chosen to be a change-
point process, and both change-point processes are elected to be a priori indepen-
dent: P (S,R) = P (S)P (R). The objective of Bayesian inference is to sample both
hidden state sequences from the posterior distribution

P (S,R|D) =
∑

K

∑

K′

∫ ∫

P (S,R,K,K ′,θ,ρ|D)dθdρ (6)

which is approximately effected with RJMCMC.

2.3 Phylogenetic factorial hidden Markov model (PFHMM)

The concept of the PFHMM of Husmeier (2005) is similar to the DMCP model. The
main difference is the choice of the prior distribution on the hidden state sequences,
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P (S,R) = P (S)P (R). Rather than using two a priori independent change-point
processes, two a priori independent homogeneous Markov chains are used:

P (S) = P (S1)
N−1
∏

t=1

P (St+1|St) (7)

P (R) = P (R1)
N−1
∏

t=1

P (Rt+1|Rt) (8)

where the transition probabilities are given by

P (St+1|St) = νSδSt+1,St +
1− νS

K − 1
(1− δSt+1,St) (9)

P (Rt+1|Rt) = νRδRt+1,Rt +
1− νR

K ′ − 1
(1− δRt+1,Rt) (10)

Here, δi,j is the Kronecker delta symbol, which is one if i = j, and zero otherwise.
Note that the change-point process is a special case of a Markov chain, in which

a state can only be visited once, without the possibility of a state reoccurring. This
is an unnatural assumption in the context of recombination. When a recombination
event has occurred in the central segment of a sequence alignment, then the evolu-
tionary history of this central segment will be different from the flanking regions of
the alignment. However, the two flanking regions share the same evolutionary his-
tory. This can be modelled with a Markov chain of two states and two transitions:
from state 1 into state 2, and back from state 2 into state 1. However, a change-
point process does not provide a mechanism to combine the two flanking regions into
the same state. To rephrase this in terms of Markov chains: a change-point process
corresponds to a Markov chain with two separate states for the two flanking regions,
as the re-occurrence of a previously visited state is impossible. Consequently, the
model has to infer the identity of the two states from the data. This is subopti-
mal, and it leads to an increased inference uncertainty (especially for short sequence
alignments); see Lehrach (2008) for further details.

There are various differences in the detailed implementation of the methods. For
the PFHMM described in Husmeier (2005), the parameters K,K ′, θ and ρ are fixed.
This allows the computationally expensive RJMCMC simulations to be replaced by
a much faster Gibbs sampling procedure. However, this difference is not essential
to the PFHMM. In fact, the constraints on the parameters have been relaxed in
Lehrach (2008) and Lehrach and Husmeier (2009), where – similarly to the work of
Minin et al. (2005) – RJMCMC was used.

2.4 Analytic integration over the branch lengths

Consider a phylogenetic tree with topology S and branch lengths w, denote the
nucleotide substitution parameters by θ, and assume we are given a single column
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y from a DNA sequence alignment. The probability of this column, y, is given by
the following standard form (see, e.g., Husmeier et al. (2005a)):

P (y|w, S,θ) =
∑

hidden

P (ỹr)
∏

n

P (ỹn|ỹpa(n), w
pa(n)→n,θ) (11)

Here, ỹn = yn if the node n in the phylogenetic tree is observed (usually a leaf
node). Otherwise, ỹn is a hidden variable (usually an ancestral node corresponding
to a speciation point) that is marginalized over in the sum. The subscript r rep-
resents the root note, which for a reversible nucleotide substitution model can be
chosen arbitrarily without affecting the probability of y. The length of the branch
connecting node n to its parent pa(n) is denoted by wpa(n)→n. The factorization in
the expansion of equation (11) is defined by the phylogenetic tree topology S. We
are interested in integrating out the branch lengths w according to

P (y|S,θ) =

∫

P (y|w, S,θ)P (w)dw (12)

We follow Suchard et al. (2003) and put a completely factorizable prior on the vector
of branch lengths:

P (w) =
∏

i

P (wi) =
1

ρ
exp

(

−
wi

ρ

)

(13)

where wi is a single element of w representing the length of an individual branch
connecting two nodes in the phylogenetic tree. Inserting this expression and equa-
tion (11) into equation (12) gives:

P (y|S, θ) =

∫

∑

hidden

P (ỹr)
∏

n

P (ỹn|ỹpa(n), w
pa(n)→n,θ)P (wpa(n)→n)dw (14)

=
∑

hidden

P (ỹr)
∏

n

∫

P (ỹn|ỹpa(n), w
pa(n)→n,θ)P (wpa(n)→n)dwpa(n)→n

Recall that ỹn and ỹpa(n) in P (ỹn|ỹpa(n), w
pa(n)→n,θ) represent nucleotides. The

probability of nucleotide X mutating into Z along a branch of length w is of the
following general form (Suchard et al., 2003):

P (Z|X,w,θ) = AZX exp(−BZXw) + CZX exp(−DXZw) + πZ (15)

Here, AZX , BZX , CZX , DXZ are nucleotide-dependent constants that are determined
by the eigensystem of the instantaneous rate matrix Q and, thus, depend on the
chosen nucleotide substitution model. For the HKY85 model, for instance, the
particular expressions can be found in Hasegawa et al. (1985). The last term, πZ ,
represents the equilibrium frequency of nucleotide Z, which is a parameter of the
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nucleotide substitution model. Hence, AZX , BZX , CZX , DXZ and πZ are determined
by θ.

Combining equations (13) and (15) allows the branch length to be integrated
out analytically:

P (Z|X, ρ) =

∫

P (Z|X,w)P (w|ρ)dw

= πZ +
AZX

ρ

∫

exp

(

−

[

BZX +
1

ρ

]

w

)

dw

+
CZX

ρ

∫

exp

(

−

[

DXZ +
1

ρ

]

w

)

dw

= πZ +
AZX

1 +BZXρ
+

CZX

1 +DXZρ
(16)

Inserting eq. (16) into eq. (14) gives the following closed-form solution:

P (y|S,θ) =
∑

hidden

P (ỹr)
∏

n

(

πỹr +
Aỹn,ỹpa(n)

1 +Bỹn,ỹpa(n)
ρ

+
Cỹn,ỹpa(n)

1 +Dỹn,ỹpa(n)
ρ

)

(17)

Let us now consider a whole DNA sequence alignment D = (y1, . . . ,yN ):

P (D|S,θ) =

∫

P (D|w, S,θ)P (w)dw =

∫ N
∏

t=1

P (yt|w, S,θ)P (w)dw (18)

It is seen that the independence assumption of equation (13), P (w) =
∏

i P (wi),
does not yet allow this integral to be solved in closed form. What is needed is the
expansion of the parameter space

w→ (w1, . . . ,wt, . . . ,wN ) (19)

and the further independence assumption:

P (w1, . . . ,wt, . . . ,wN ) =

N
∏

t=1

P (wt) (20)

Inserting this prior into eq. (18) gives

P (D|S,θ) =
N
∏

t=1

∫

P (yt|wt, S,θ)P (wt)dwt =
N
∏

t=1

P (yt|S,θ) (21)

where P (yt|S,θ) is given by (17). The commutation of the integral and the product,
which is a direct consequence of equations (19) and (20), allows the integral to be
solved in closed form, according to equations (14) and (17). The upshot is that for
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the branch lengths to be integrated out analytically, the model has to be modified
so as to associate a separate branch length vector wt with each position t in the
DNA sequence alignment. This model is equivalent to the no-common-mechanism
model proposed by Tuffley and Steel (1997). It is important to note that it is not
the independence assumption of eq. (13) alone that leads to this simplification, a
conclusion one might erroneously draw from Suchard et al. (2003). Rather, the
more restrictive independence assumption of eq. (20) is needed. As a consequence
of the latter independence assumption and the parameter expansion of eq. (19) the
model is over-complex, though, with no information sharing between different sites
with respect to the branch length estimation. In terms of statistical terminology,
the expansion of eq. (19) turns the structural parameters w into a set of incidental
parameters1. As discussed in Goldman (1990), this implies that maximum likelihood
is no longer guaranteed to provide a consistent estimator. This aspect, which has
not been considered in any of the three methods discussed in Section 1 – MCP,
DMCP and PFHMM – causes inconsistency problems that are related to those found
in maximum parsimony. We will investigate them more closely in the subsequent
sections.

3 Data

We suspect that the assumption of independent site-specific branch lengths, as dis-
cussed in Section 2.4, could lead to inconsistency problems akin to those that affect
maximum parsimony (Felsenstein, 1978). To test this conjecture, we tested the mod-
els on synthetic DNA sequence alignments. We used two different programs for gen-
erating these alignments: SEQGEN (Rambaut, 1996) and the MATLAB programs
used in Husmeier (2005). In both cases we simulated the nucleotide substitution pro-
cesses with the HKY model (Hasegawa et al., 1985), using a transition-transversion
ratio of 2 and uniform nucleotide equilibrium frequencies. For SEQGEN, we used
the implementation available via the web service provided by the Pasteur Institute,
available from

http : //mobyle.pasteur.fr/cgi− bin/MobylePortal/portal.py?form = seqgen.

The MATLAB programs used in Husmeier (2005) are available from

http : //www.bioss.ac.uk/staff/dirk/Supplements/,

and were preferred when running a large number of jobs in batch mode. We gen-
erated two different types of alignments: homogeneous alignments, and alignments
with mosaic structures.

1 Structural parameters are parameters that appear in the probability distributions of all the
observations, whereas an incidental parameter appears in the probability distributions of only a
subset of the observations. See Goldman (1990) for further details.
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3.1 Homogeneous DNA sequence alignment

A homogeneous DNA sequence alignment is an alignment where one single phylo-
genetic tree with a specified branch length vector is used in the data generating
process. We generated alignments from the 4-taxa tree depicted in Figure 1 for dif-
ferent settings of the branch length configurations, specified by the values d2 and d3.
This corresponds to a study originally carried out by Felsenstein for investigating po-
tential shortcomings and inconsistencies of maximum parsimony (Felsenstein, 1978).
We varied the parameters d2 and d3, defined in Figure 1, over a large range that in-
cluded the so-called Felsenstein zone, in which maximum parsimony systematically
fails. The data thus generated were used for the studies reported in Figures 4, 5, 6,
and 8. All sequence alignments were 1000 nucleotides long.

3.2 DNA sequence alignment with mosaic structure

A mosaic structure is a DNA sequence alignment subject to recombination and/or
rate heterogeneity, where a segment in the DNA sequence alignment was generated
from a tree with a different tree topology, or with different branch lengths. We
generated DNA sequence alignments from the 4-taxa tree shown in Figure 1. The
alignments were 1500 nucleotides long. They contained a central segment of 500
nucleotides, which was generated from a tree with the same topology as for the
flanking regions, but with a different branch length configuration. The objective of
our study was to investigate if spurious tree topology changes were inferred with the
recombination detection methods described in Section 2 if the branch length config-
urations for the central and flanking regions were on different sides of the Felsenstein
boundary. The alignments thus generated were used in the study described in the
caption of Figure 9.

4 Bayesian model selection

As discussed in Section 2.4, the integration over the branch lengths, on which the
three methods MCP, DCMP and PFHMM rely, is based on the choice of indepen-
dent site-specific branch lengths, that is, the vector of branch lengths is allowed to
be different at each site. Since separate branch length vectors wt are associated
with different positions t in the alignment, there is no longer a mechanism in place
to over-rule a posteriori the prior independence assumption of equation (13). We
suspect that MCP, DCMP and PFHMM might therefore be susceptible to the same
inconsistency problems as the method of maximum parsimony, which could result
in the prediction of spurious topology changes. Before investigating this conjecture
in direct simulation studies, to be discussed in Section 5.2, we carried out system-
atic Bayesian model selection along the Felsenstein zone (introduced in Felsenstein
(1978)). To this end, we generated data synthetically from the four-taxa tree of
Figure 1 with two types of branches, d2 and d3, as described in Section 3.
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Figure 1: Phylogenetic tree of four taxa
The figure shows a phylogenetic tree of four taxa, which was used for generating the
synthetic DNA sequence alignments, as described in Section 3. The tree contains
two types of branch lengths, denoted by d2 and d3, as in Felsenstein (1978). For
configurations with large branch lengths d3 and small branch lengths d2, the method
of maximum parsimony is known to systematically infer the wrong tree topology.

For the different d2/d3 ratios, we estimated the marginal likelihood P (D|S,Hi)
for each of the three possible tree topologies, S ∈ {Ψ1,Ψ2,Ψ3} , under the two
hypotheses or modelling approaches: independent site-specific branch length vectors
wt (H0), and a common vector of branch lengths w for the whole alignment (H1).
Under the assumption of a uniform prior on the tree topologies, we estimated the
posterior probability for the correct tree topology

P (S = true|D,Hi) =
P (D|S = true,Hi)

∑3
k=1 P (D|S = Ψk,Hi)

(22)

We investigated the behaviour of P (S = true|D,Hi) in d2/d3 space, especially
around the Felsenstein zone. For estimating the marginal likelihood, we pursued
two approaches: an inter-model approach, using MCMC, and an intra-model ap-
proach, using the method of annealed importance sampling (AIS), as proposed in
Neal (2001). Below, in Sections 4.1 and 4.2, we will first define the exact form of the
probabilistic models associated with H0 and H1. We will then, in Sections 4.3 and
4.4, briefly describe the way we computed the marginal likelihoods. Finally, we will
present the results and investigate the behaviour of the two modelling frameworks
around the Felsenstein zone.

4.1 Independent site-specific branch-length model H0

To investigate whether there are potential inconsistency problems inherent in the
recombination detection methods MCP, DMCP and PFHMM, we considered the
standard phylogenetic model (without recombination) subject to the same indepen-
dence assumptions of equations (13) and (20) on which MCP, DMCP and PFHMM
are based. We refer to this modelling concept as H0. The corresponding graphi-
cal model is shown in Figure 2. The right panel depicts the site-independence of
the branch lengths, inherent in equation (20). As a consequence of the analytic
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integration over the branch lengths, discussed in Section 2.4, the model simplifies.
The resulting probabilistic graphical model is shown in Figure 2a, which defines the
following factorization:

P (D, S, ρ, α) = P (D|S, ρ)P (S)P (ρ|α) (23)

Here, D is the DNA sequence alignment, S is the tree topology, ρ (defined in equa-
tion (13)) represents the average mutational divergence, and α is a hyperparameter
that defines the prior distribution of ρ:

P (ρ|α) =
1

α
e−

ρ
α (24)

The prior distribution over tree topologies, P (S), is chosen to be uniform. The
objective of Bayesian model selection for learning the best tree topology S is to
estimate the marginal likelihood

P (D|S, α) =

∫

P (D|S, ρ)P (ρ|α)dρ, (25)

which is the numerator in the model selection equation (22). The term P (D|S, ρ)
is given in (21), where the explicit reference to H0 and the nucleotide substitution
parameters θ has been left out to reduce the notational complexity.2

4.2 Standard phylogenetic model H1

For comparison with H0, we consider the standard phylogenetic model, in which a
common vector of branch lengths w is used for the whole DNA sequence alignment,
as depicted in Figure 3b. We refer to this modelling concept as H1. The essential
difference from H0 is that the independence assumption of equation (20), on which
MCP, DMCP and PFHMM are based, is no longer valid. The consequence is that
the elimination of the branch lengths, as described in Section 2.4 and represented
in Figure 2a, is no longer feasible, resulting in the more complex probabilistic de-
pendence model of Figure 3a. The structure of the model incorporates the average
mutational divergence ρ, and the branch length vector w, and the joint probability
factorizes as follows:

P (D, S,w, ρ, α) = P (D|S,w)P (w|ρ)P (S)P (ρ|α) (26)

P (S) is the prior distribution over tree topologies, which we keep uniform. The
prior distribution over branch lengths, P (w|ρ), is defined in equation (13). This
distribution depends on the hyperparameter ρ, which is given the prior distribution

2Recall that the free nucleotide substitution parameters θ of the HKY model are the equilibrium
frequencies and the transition-transversion ratio. In our simulations, we chose a uniform distribution
for the equilibrium frequencies, and a fixed transition-transversion ratio of 2. Also, note that in
(21) the explicit reference to the hyperparameter ρ has been dropped for notational convenience.

12



a) b)

Figure 2: Graphical model for hypothesis H0

Hypothesis H0 is based on the independence assumption of equation (20), which
is depicted in Panel b). Here, the yt represent the columns in the DNA sequence
alignment, the wt’s are separate independent vectors of branch lengths, associated
with the sites t in the alignment, and ρ is a hyperparameter determining the prior
distribution over the branch lengths, via equation (13). As a consequence of the
independence assumptions inherent in this model, the branch lengths can be inte-
grated out, as described in Section 2.4. The resulting probabilistic graphical model
is shown in Panel a). Here D (which is equal to D in the text) is the DNA sequence
alignment, S is the tree topology, ρ (defined in equation (13)) represents the average
mutational divergence, and α is a hyperparameter that defines the prior distribution
of ρ; see equation (24). Further details are given in Section 4.1.

of equation (24). The objective of Bayesian model selection is to estimate the
marginal likelihood

P (D|S, α) =

∫

P (D|S,w)P (w|ρ)P (ρ|α)dρdw (27)

Here, P (D|S,w) is the (non-marginal) likelihood, which is obtained from P (yt|S,w)
defined in equation (11) as follows:

P (D|S,w) =

N
∏

t=1

P (yt|S,w) (28)

Note that in order to simplify the notation and the graphical presentation, we have
not made the dependence on the nucleotide substitution parameters θ explicit in
equation (28) and Figures 2-3.
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a) b)

Figure 3: Graphical model for hypothesis H1

The symbols are the same as those defined in Figure 2. Panel b) shows that a
common vector of branch lengths w is used to describe the whole DNA sequence
alignment, rather than independent site-specific vectors, as in Figure 2b. The con-
sequence is that the elimination of the branch lengths, as described in Section 2.4
and represented in Figure 2a, is no longer feasible, resulting in the more complex
probabilistic dependence model of Panel a). Further details are given in Section 4.2.

4.3 Inter-model approach: Markov chain Monte Carlo (MCMC)

The objective of the inter-model approach is to sample tree topologies from the
posterior distribution of equation (22).

4.3.1 MCMC framework for hypothesis H0

Recall that for a DNA sequence alignment with four sequences, there are three
different unrooted tree topologies. Our proposal distribution for proposing a new
tree topology S∗ from the current topology S is just the uniform distribution over
the tree topology space. For proposing a new rate3 ρ∗, we sample a value ρ] from
the uniform interval of length W centred on the current value ρ, using reflection to
ensure the proposed value is positive: ρ∗ = ρ] if ρ] ≥ 0; otherwise ρ∗ = −ρ]. This
proposal distribution depends on a tuning parameter W , which is adjusted during
the burn-in period to achieve a target acceptance rate between 30% and 70%. The
Metropolis-Hastings acceptance probability for this move is:

a(S∗, ρ∗|S, ρ) = min

{

1,
Q (ρ|ρ∗)P (ρ∗|α)Q(S|S∗)P (S∗)P (D|S∗, ρ∗)

Q (ρ∗|ρ)P (ρ|α)Q(S∗|S)P (S)P (D|S, ρ)

}

(29)

3In a slight abuse of terminology, we henceforth refer to the hyperparameter ρ as the “rate”.
14



where P (D|S, ρ) is the likelihood, defined in equation (21), P (S) and P (ρ|α) are
the prior distributions for the tree topology and the rate, defined in Section 4.1,
and Q(S∗|S) and Q(ρ∗|ρ) are the proposal distributions, as discussed above. It is
straightforward to show that the latter distributions are symmetric and thus cancel
out. The prior distribution in tree topology space, P (S), is uniform. Equation (29)
thus simplifies as follows:

a(S∗, ρ∗|S, ρ) = min

{

1,
P (ρ∗|α)P (D|S∗, ρ∗)

P (ρ|α)P (D|S, ρ)

}

(30)

To increase the acceptance probabilities, we de-couple the proposal step into two
separate steps for proposing a new tree topology and a new rate, with the following
acceptance probabilities:

a(S∗|S) = min

{

1,
P (D|S∗, ρ)

P (D|S, ρ)

}

, (31)

a(ρ∗|ρ) = min

{

1,
P (ρ∗|α)P (D|S, ρ∗)

P (ρ|α)P (D|S, ρ)

}

. (32)

4.3.2 MCMC framework for hypothesis H1

Recall that for Hypothesis H1 the analytic integration over the branch lengths w is
no longer tractable; hence, the sampling of a new vector of branch lengths w∗ from
the existing branch lengths w has to be incorporated into the MCMC scheme. We
elected to propose new values w]

i independently from a Cauchy distribution centred
on the current value wi

Q(w]
i |wi, γ) =

1

πγ

(

1 +

(

w
]
i−wi

γ

)) (33)

subject to the constraint that the proposed new branch length w∗
i must be non-

negative. Again, this constraint is achieved by reflection: w∗
i = w]

i if w]
i ≥ 0;

otherwise w∗
i = −w]

i . The spread of the proposal distribution is defined by the
tuning parameter γ, which is adjusted during the burn-in phase to achieve an average
acceptance rate between 30% and 70%. The proposal distributions for the tree
topology S and the rate ρ are the same as discussed in the previous subsection. The
Metropolis-Hastings acceptance probability is given by

a(S∗, ρ∗,w∗|S, ρ,w) = min {1, r} (34)

r =
Q (ρ|ρ∗)P (ρ∗|α)

(

∏K
i=1Q(wi|w

∗
i )P (w∗

i |ρ)
)

Q(S|S∗)P (S∗)P (D|S∗,w∗)

Q (ρ∗|ρ)P (ρ|α)
(

∏K
i=1Q(w∗

i |wi)P (wi|ρ)
)

Q(S∗|S)P (S)P (D|S,w)
15



where K = dim {w}, Q(w∗
i |wi) is the proposal distribution for a new branch length,

which is straightforward to compute from equation (33) and the condition of reflec-
tion, P (w∗

i |ρ) is the prior distribution of the branch lengths, defined in equation (13).
P (D|S,w) is defined in equation (28). The other expressions are the same as defined
below equation (29) in the previous subsection.

It is straightforward to show that the proposal distribution for the branch
lengths, Q (w∗

i |wi), is symmetric and thus cancels out. Together with the sim-
plifications discussed below equation (29) we get the following simplified expression:

a(S∗, ρ∗|S, ρ) = min

{

1,
P (ρ∗|α)

∏K
i=1 P (w∗

i |ρ)P (D|S∗,w∗)

P (ρ|α)
∏K

i=1 P (wi|ρ)P (D|S,w)

}

(35)

As with the model discussed in the previous subsection, we de-couple the individual
update steps so as to increase the acceptance probability:

a(w∗|w) = min

{

1,

∏K
i=1 P (w∗

i |ρ)P (D|S,w∗
i )

∏K
i=1 P (wi|ρ)P (D|S,wi)

}

(36)

a(ρ∗|ρ) = min

{

1,
P (ρ∗|α)

∏K
i=1 P (wi|ρ

∗)

P (ρ|α)
∏K

i=1 P (wi|ρ)

}

(37)

a(S∗|S) = min

{

1,
P (D|w, S∗)

P (D|w, S)

}

(38)

4.3.3 Convergence diagnostics

The Gelman and Rubin diagnostic test (Gelman and Rubin, 1992) was used in the
simulations for both models to investigate whether the chains have converged. The
tests output a (set of) so-called potential scale reduction factor(s) (PSRF), where
a value close to 1 provides a strong indication of convergence. We computed the
PSRF from the branch lengths and the rate hyperparameter ρ, and chose burn-in
and simulation lengths that led to PSRFs below 1.1. This was effected with the
following settings. For H0, we carried out 2K burn-in and 5K sampling steps. For
H1, these values had to be slightly increased (owing to the larger dimension of the
parameter space), to 5K burn-in and 10K sampling steps.

4.4 Intra-model approach: Annealed importance sampling (AIS)

As an alternative to the inter-model MCMC sampling scheme discussed in the pre-
vious section, we consider an intra-model approach, where the objective is a direct
(approximate) computation of the marginal likelihood

P (D|S) =

∫

P (D|φ, S)P (φ|S)dφ (39)
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where φ is the vector of all parameters associated with the respective hypothesis:
φ = ρ under the site-independent branch length hypothesis H0, and φ = (w, ρ) for
H1. In principle one could approximate the marginal likelihood by

P (D|S) ≈
1

N

N
∑

t=1

P (D|φt, S) (40)

where {φt} is a sample from the prior distribution P (φ|S). However, the conver-
gence of this estimator is known to be poor unless the prior and posterior distribu-
tions are very similar (Raftery, 1996). Alternatively, one could exploit the Bayesian
identity P (D|φ, S)P (φ|S) = P (φ|D, S)P (D|S) and compute the marginal likeli-
hood from the so-called harmonic mean estimator (Raftery, 1996)

1

P (D|S)
≈

1

N

N
∑

t=1

1

P (D|φt, S)
(41)

using a sample {φt} from the posterior distribution P (φ|D, S). This estimator is
known to be numerically unstable, since for modestly informative priors the main
contributions to the sum on the right-hand side of equation (41) come from the
tail rather than the bulk of the posterior distribution. The standard approach to
deal with these problems is to use importance sampling. Define some (possibly
unnormalized) distribution Q(φ), and rewrite equation (39) in the form:

P (D|S)

ZQ
=

∫

P (D|φ, S)P (φ|S)

Q(φ)

Q(φ)

ZQ
dφ (42)

where ZQ =
∫

Q(φ)dφ. Provided Q(φ) 6= 0 whenever P (D|φ, S)P (φ|S) 6= 0, we
get the following unbiased and consistent estimator of the marginal likelihood (Neal,
2001):

P (D|S)

ZQ
←−

1

N

N
∑

t=1

ct (43)

where {φt} is a sample drawn from
Q(φ)
ZQ

, and the weights ct are defined as ct =

P (D|φt,S)P (φt|S)

Q(φt)
. Rather than using some fixed distribution Q(φ) as a compromise

between the prior and the posterior distribution, as in Raftery (1996), we follow
the annealed importance sampling (AIS) scheme proposed in Neal (2001), where
the idea is to propose new values {φt} by gradually transforming the prior into the
posterior distribution. Define

Qm(φ) = P (φ|S)[1−βm]P (φ|D, S)βm (44)

where 1 = β0 > β1 > . . . > βM = 0. That is, QM is equal to the prior, and Q0

is equal to the posterior distribution. AIS produces a sample of parameter vec-
tors {φt} and associated weights {ct} according to the following procedure. Con-
sider a Markov chain transition defined by Tm(x′|x) giving the probability of mov-
ing from the current state x to the new state x′. The choice of Tm is decided
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by the requirement that it must leave the corresponding probability distribution
Qm in equation (44) invariant, e.g. by satisfying the equation of detailed balance:
Tm(x′|x)Qm(x) = Tm(x|x′)Qm(x′). Next, a sequence of points is generated as fol-
lows:

Generate xM−1 from QM

Generate xM−2 from xM−1 using TM−1

. . .
Generate x1 from x2 using T2

Generate x0 from x1 using T1

(45)

The proposed parameter vector of the tth iteration is set to φt = x0, and the
associated weight is set to

ct =
QM−1(xM−1)

QM (xM−1)

QM−2(xM−2)

QM−1(xM−2)
. . .

Q1(x1)

Q2(x1)

Q0(x0)

Q1(x0)
(46)

The scheme is continued to generate a sample of weights {ct}. It can be shown
that for the sample of weights thus obtained, equation (43) provides a consistent
and unbiased estimator of the marginal likelihood (Neal, 2001). The individual
steps of (45) can be constructed by applying the Metropolis-Hastings algorithm
(Metropolis et al., 1953) to the respective transition probability Tm, as in MCMC.
Note that as opposed to MCMC, the respective Markov chains do not need to be
run to convergence, though.

4.4.1 Details of the simulations

In our simulations, we carried out for each step in (45) 10 Metropolis-Hastings steps
according to the description in Section 4.3.1, for H0, and Section 4.3.2, for H1. A
“temperature” ladder of M = 10 equidistant βm values for defining the intermediate
distributions Qm in (44) was selected, and we chose a total sample size of N = 400
for computing the marginal likelihood according to (40). We experimented with a
polynomial rather than an equidistant cooling scheme for β, but did not find any
noticeable differences in the results.

As a heuristic indicator of how accurate the estimation with AIS is, we followed
Neal (2001) and computed the variance of c∗t = ct/

1
N

∑N
t=1 ct. The term ψ =

1/[1 + V ar(c∗t )] gives a rough indication of the factor by which the sample size is
effectively reduced when drawing samples according to the procedure (45) rather
than from the correct posterior distribution. In our simulations, we typically found
values of ψ ≤ 1.3, indicating a sufficient degree of convergence.
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5 Results

5.1 Investigating the behaviour around the Felsenstein zone

We generated synthetic DNA sequence alignments from 4-taxa trees with different
branch lengths. In the vein of Felsenstein’s seminal study for demonstrating the
inconsistency of maximum parsimony (Felsenstein, 1978), we systematically varied
the parameters d2 and d3 in Figure 1, and generated DNA sequence alignments
with SEQGEN (Rambaut, 1996), as described in Section 3. For each branch length
configuration [d2, d3], we estimated the posterior probabilities for the three possi-
ble tree topologies under the two different models discussed above: the site-specific
branch length model H0, described in Section 4.1, and the standard phylogenetic
model H1, described in Section 4.2. We repeated the estimation of the posterior
probabilities with two different methods: MCMC, as described in Section 4.3, and
annealed importance sampling, as described in Section 4.4. The results are shown in
Figures 4 and 5. In both figures, subfigure a) shows the results for the site-specific
branch length model H0, while subfigure b) shows the results for the standard phy-
logenetic model H1. The axes represent the values of the parameters d2 and d3;
hence each grid location defines a phylogenetic tree with a specific branch length
configuration. The estimated posterior probabilities are indicated with a grey shad-
ing ranging from 0 (black) to 1 (white) and the values in between are indicated by
the legend in subfigure c). It is clearly seen that the independent branch length
model H0 leads to a systematic failure in the Felsenstein zone (characterized by a
small value of d2 and a large value of d3) in that the posterior probability of the
correct tree is consistently close to zero. In fact, the tree topology with the highest
posterior probability was found to be the one in which the two longer branches were
grouped together. This suggests that the independent branch length model H0 has
the same problem with long-branch attraction as maximum parsimony. This failure
was avoided with the standard phylogenetic model H1, whose posterior probability
of the correct tree topology was consistently above 0.5 (and mostly close to 1) for
the whole branch length configurations space. The results obtained with MCMC
and AIS were largely consistent, although the difference between the posterior prob-
abilities for H0 and H1 in the Felsenstein zone was slightly larger with MCMC than
with AIS.

5.2 Evaluation of the performance of DMCP and PFHMM

The previous section has shown that for the model of independent, site-specific
branch lengths (H0), there is a systematic failure in the Felsenstein zone, which
is avoided with the standard phylogenetic model of common branch lengths, H1.
Since the recombination detection methods PFHMM and DMCP are based on H0,
we suspect that they are susceptible to the same systematic failure. We tested this
conjecture by applying both methods, DMCP and PFHMM, to the same synthetic

19



a)

Analytic integration: the rate and topology are the parameters

d2−size of branch lengths 2,3 and 4

d3
−

si
ze

 o
f b

ra
nc

h 
le

ng
th

s 
1 

an
d 

5

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85

0.95

0.85

0.75

0.65

0.55

0.45

0.35

0.25

0.15

c)

b)
0 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

0

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

1.05

d2−size of branch lengths 2,3 and 4

d3
−

si
ze

 o
f b

ra
nc

h 
le

ng
th

s 
1 

an
d 

5

Figure 4: Posterior probabilities estimated with MCMC.
The two figures show the posterior probability of the correct tree topology for differ-
ent branch length configurations. These configurations are determined by the values
of d2 and d3, as defined in Figure 1. In each subfigure, the horizontal axis refers
to d2, and the vertical axis refers to d3. The grey shading indicates the value of
the inferred posterior probability, as indicated in the legend on the right, ranging
from 0 (black) to 1 (white). Subfigure a) shows the results obtained for Model H0,
represented in Figure 2. Subfigure b) shows the results obtained for Model H1,
represented in Figure 3. The results shown are those obtained from a specific set of
DNA sequence alignments generated from trees with the indicated [d2, d3] configura-
tions, as described in Section 3.1. Repeating the simulations for different sequences
generated from the same trees was found to give nearly identical results. It is clearly
observed that Model H0, which is shown in Subfigure a), leads to the systematic
prediction of the wrong tree topology in the Felsenstein zone.
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Figure 5: Posterior probabilities estimated with Annealed Importance Sampling.
As in Figure 4, Subfigures a) and b) show the posterior probability of the correct tree
topology for different branch length configurations. The results were obtained with
annealed importance sampling rather than MCMC and show an average over five
DNA sequence alignments independently generated for each branch length configu-
ration. These configurations are determined by the values of d2 and d3, as defined
in Figure 1. In each subfigure, the horizontal axis refers to d2, and the vertical axis
refers to d3. The grey shading indicates the value of the inferred posterior proba-
bility, as indicated in the legend on the right, ranging from 0 (black) to 1 (white).
Subfigure a) shows the results obtained for Model H0, represented in Figure 2. Sub-
figure b) shows the results obtained for Model H1, represented in Figure 3. Like in
Figure 4, it is clearly observed that Model H0, which is shown in Subfigure a), leads
to the systematic prediction of the wrong tree topology in the Felsenstein zone.
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DNA sequence alignments as used in the previous section. For comparison, we also
applied the phylogenetic hidden Markov model (PHMM) of Husmeier and McGuire
(2003). Note that the latter model is based on H1 and should therefore not be
susceptible to inferring wrong tree topologies in the Felsenstein zone.4 We used
the authors’ own programs, available from the webpages referenced in Minin et al.

(2005) (for DMCP), Husmeier (2005) (for PFHMM) and Husmeier and McGuire
(2003) (for PHMM). All three methods sample parameters and hidden states from
the posterior distribution with MCMC. To test for convergence of these simulations,
we computed the potential scale reduction factor from different quantities, as in
Gelman and Rubin (1992), taking values below 1.1 as an indication of sufficient
convergence5. From the sampling phase of the MCMC simulations, we computed
for each site t in the alignment the marginal posterior probabilities P (St|D) of the
three possible tree topologies St ∈ {Ψ1,Ψ2,Ψ3}

6. The results were similar to those
discussed in the previous section, with a clear systematic failure of PFHMM and
DMCP in the Felsenstein zone. This failure was avoided when using PHMM. A
specific example is presented in Figure 6, which shows the posterior probabilities
P (St|D) for a DNA sequence alignment D generated from the tree in Figure 1 with
a branch length configuration d2 = 0.15, d3 = 0.85. A comparison with Figures 4
and 5 shows that this branch length configuration lies clearly in the Felsenstein
zone. In support of our conjecture, both PFHMM and DMCP systematically show
high posterior probabilities P (St|D) close to 1 for a wrong tree topology throughout
the whole DNA sequence alignment. Incidentally, in the high-scoring tree topology
the two long non adjacent branches d3 in Figure 1 are grouped together, suggesting
that PFHMM and DMCP suffer from the same long branch attraction as the method
of maximum parsimony (Felsenstein, 1978). There are no problems with PHMM,
which consistently scored high posterior probabilities P (St|D) close to 1 for the
correct tree topology throughout the whole alignment.

6 Improving the phylogenetic factorial HMM

Our study described in the previous sections has revealed that the phylogenetic
factorial HMM (PFHMM) of Husmeier (2005) is susceptible to systematically pre-
dicting spurious topology changes in the Felsenstein zone. The objective of the
present section is to describe a modification of the PFHMM that avoids this short-

4Note that as opposed to DMCP and PFHMM, PHMM cannot distinguish between recombina-
tion and rate heterogeneity, though.

5This was achieved with the following burn-in and sampling lengths. Burn-in: 1000 steps for
DMPC, 250 steps for PFHMM, and 10K steps for PHMM. Sampling phase: 200 subsample steps (in
intervals of 50 steps) for DMPC, 250 steps for PFHMM, and 1000 subsample steps (in intervals of 10
steps) for PHMM. PFHMM needs as input a set of fixed nucleotide substitution rates, corresponding
to the hyperparameter ρ in eq 13. These values were selected as ρ ∈ {0.05, 0.1, 0.5, 1, 2, 4, 6, 8}.

6 These tree topologies are Ψ1 = (1, 2, (3, 4)), Ψ2 = (1, 3, (2, 4)), and Ψ3 = (1, 4, (2, 3)), where
the numbers refer to the four taxa.
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Figure 6: Failure of PFHMM and DMCP in the Felsenstein zone
Each figure shows a plot of the marginal posterior probability P (St|D) (vertical
axes) of the three possible tree topologies St ∈ {Ψ1,Ψ2,Ψ3} for the 4-taxa tree of
Figure 1, plotted against the position t in the DNA sequence alignment (horizontal
axes). Each subfigure consists of three panels, where the top panel corresponds
to the true tree topology, from which the data were generated. The middle panel
corresponds to a wrong tree topology, in which the two long branches d3 in Fig-
ure 1 are grouped together (long branch attraction). The bottom panel corresponds
to another wrong tree topology. The three subfigures show the results obtained
for the three recombination detection methods investigated: DCMP (Subfigure a),
PFHMM (Subfigure b), and PHMM (Subfigure c). PHMM predicts high posterior
probabilities P (St|D) close to 1 for the true tree topology throughout the whole
sequence alignment. However, both PFHMM and DMCP systematically show high
posterior probabilities P (St|D) close to 1 for the wrong tree topology in which the
two long non-adjacent branches are joined.
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coming. A probabilistic graphical model representation of the PFHMM of Husmeier
(2005) is shown in Figure 7 a. The model is essentially based on Model H0 of Fig-
ure 2 in that separate branch length vectors are associated with different sites of
the alignment. This allows the branch lengths to be integrated out analytically, as
described in Section 2.4, resulting in the simplified model depicted in Figure 7 b.
The modified PFHMM is shown in Figure 7 c. Akin to Model H1 of Figure 3,
a common vector of branch lengths is shared by all sites in the alignment7. The
rate states Rt ∈ {ρ1, . . . , ρk′}, which in the original PFHMM of Husmeier (2005)
are associated with the hyperparameter ρ of the prior distribution on the branch
lengths, equation (13), are now associated with a global scaling factor by which
the vector of branch lengths is multiplied. The hidden state sequences, S and R,
and the model parameters are sampled from the posterior distribution with a Gibbs
sampling procedure:

S(i+1) ∼ P
(

·|R(i), ν
(i)
S , ν

(i)
R ,w(i),D

)

(47)

R(i+1) ∼ P
(

·|S(i+1), ν
(i)
S , ν

(i)
R ,w(i),D

)

(48)

ν
(i+1)
S ∼ P

(

·|S(i+1),R(i+1), ν
(i)
R ,w(i),D

)

(49)

ν
(i+1)
R ∼ P

(

·|S(i+1),R(i+1), ν
(i+1)
S ,w(i),D

)

(50)

w(i+1) ∼ P
(

·|S(i+1),R(i+1), ν
(i+1)
S , ν

(i+1)
R ,D

)

(51)

where the superscript i denotes the iteration number. The first four steps are iden-
tical to those in Husmeier (2005): The hidden state sequences S and R are sampled
with the stochastic forward-backward algorithm of Boys et al. (2000); the transition
probabilities νS and νR, defined in equations (9) and (10), are sampled from beta
distributions whose sufficient statistics are determined by S and R. The new as-
pect of our algorithm is the sampling of the branch length vector w. Since there
is no closed-form expression for the distribution on the right-hand side of equa-
tion (51), we resort to a Metropolis-Hastings-within-Gibbs procedure. Note that
w = (w1,w2,w3) is composed of three subvectors wk, k ∈ {1, 2, 3}, associated with
the three tree topologies represented by the hidden state St ∈ {Ψ1,Ψ2,Ψ3}. To
ensure that the model is identifiable, we constrain the L1-norm of the branch length
vectors to be equal to one: ||wk||1 = 1, k ∈ {1, 2, 3}; recall that the scaling of
the branch lengths is effected by multiplication with a factor defined by the hid-
den states, Rt ∈ {ρ1, . . . , ρK′}. This constraint, as well as the positivity constraint
wki ≥ 0, is automatically guaranteed when proposing new branch length vectors w∗

k

7More accurately, there are three vectors of branch lengths wk, k ∈ {1, 2, 3}, associated with
the three different tree topologies. This can be modelled as a common vector composed of three
sub-vectors, where the state variable St indicates which of these subvectors applies to site t.
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from a Dirichlet distribution:

Q(w∗
k|wk) ∝

∏

i

[w∗
ki]

αwki−1 (52)

whose mean and variance are given by

E[w∗
ki|wki] = wki; Var[w∗

ki|wki] =
wki(1− wki)

α+ 1
(53)

Hence, the mean of the proposal distribution is equal to the current branch length,
while the variance depends on a scaling parameter α. In our simulations, α was auto-
matically adjusted in the burn-in phase to achieve an average acceptance probability
between 30% and 70%. The proposed vector of branch lengths w∗ was accepted or
rejected according to the standard Metropolis-Hastings criterion (Hastings, 1970),
with the following acceptance probability:

A = min

{

1,
L(w∗

k)P (w∗
k)Q(wk|w

∗
k)

L(wk)P (wk)Q(w∗
k|wk)

}

(54)

where the proposal distribution Q(w∗
k|wk) is defined in equation (52), the prior dis-

tribution P (wk) was chosen as defined in equation (13), with a fixed hyperparameter
ρ = 1, and the likelihood L(wk) depends on the hidden state sequences S and R as
follows:

L(wk) =
∏

t|St=Ψk

P (yt|Rtwk,Ψk,θ) (55)

where the expression in the argument of the product is given by equation (11). The
details of the Gibbs sampling scheme used in our simulations are summarized in the
appendix.

7 Results for the improved PFHMM

7.1 Simulation details

We tested the improved PFHMM on the two types of synthetic DNA sequence align-
ments described in Section 3. The homogeneous DNA sequence alignments were the
same as those used in the previous studies. The DNA sequence alignment with the
mosaic structure was generated as described in Section 3, setting d2 = d3 = 0.25 for
the flanking segments, and d2 = 0.15, d3 = 0.85 for the central segment. Hence, the
branch length configuration corresponding to the central segment lies clearly in the
Felsenstein zone; compare with Figures 4 and 5. Note that the DNA sequence align-
ment does not contain any change of the tree topology, though. For both the original
PFHMM of Husmeier (2005) and the improved PFHMM we sampled the state se-
quences S from the posterior distribution with MCMC, monitoring convergence with
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Figure 7: Graphical model of the PFHMM and the improved PFHMM
Subfigure a) shows the probabilistic graphical model representation of the phylo-
genetic factorial HMM of Husmeier (2005). The yt’s represent the columns in the
DNA sequence alignment, where the subscript t = 1, . . . , N indicates the site in the
alignment. Each site t is associated with a hidden state St that defines the tree
topology, a vector of branch lengths wt, and a second hidden state Rt that defines
the hyperparameter of the prior distribution on the branch lengths, as defined in
equation (13). Both hidden states St and Rt have a Markovian dependence struc-
ture. The chosen form of the model allows the branch lengths to be integrated out
analytically, as described in Section 2.4. This results in the simplified model depicted
in Subfigure b). Note that this model is a phylogenetic factorial HMM, where one
type of hidden states (S1, . . . , SN ) defines the tree topology, and the other type of
hidden states (R1, . . . , RN ) defines the average amount of mutational divergence.
Hence, the model presented here is a generalization of the model shown in Figure 2
so as to allow for recombination and rate heterogeneity. Subfigure c) shows the
probabilistic graphical model representation of the improved phylogenetic factorial
HMM proposed in the present article. The model is similar to the one presented
in the previous subfigures with the difference that a common branch length vector
w is shared among all sites. This is a generalization of the standard phylogenetic
model of Figure 3 that allows for recombination and rate heterogeneity.
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Figure 8: Results of the improved PFHMM
The figure shows, for different branch length configurations [d2, d3], as defined in
Figure 1, the posterior probability P (S = Ψtrue|D), defined in equation (56). The
horizontal axis represents d2, and the vertical axis represents d3. Probabilities are
represented by a grey shading, ranging from white (1) to black (0), as indicated by
the legend on the right. The figure shows that as a consequence of the modification
of the PFHMM, described in Section 6, the systematic failure in the Felsenstein
zone, which was found in Subfigure a) of Figures 4 and 5, is avoided. These results
are the averaging over 2 independent simulations.

the diagnostic test based on potential scale reduction factors (Gelman and Rubin,
1992); the details were given in Section 4.3.3. Note that both the original and the
improved PFHMM need as input a set of fixed nucleotide substitution rates, corre-
sponding to the hyperparameter ρ in equation (13). These values, which are associ-
ated with the rate states R, were selected as follows: ρ ∈ {0.05, 0.1, 0.5, 1, 2, 4, 6, 8}.

7.2 Simulation results

Figure 8 shows the results obtained with the improved PFHMM on the homogeneous
DNA sequence alignment. The figure shows, for different branch length configura-
tions [d2, d3], the average posterior probability of the correct tree topology Ψtrue,
averaged over all positions in the alignment:

P (S = Ψtrue|D) =
1

N

N
∑

t=1

P (St = Ψtrue|D) (56)

It is clearly seen that the failure in the Felsenstein zone is avoided, and that P (S =
Ψtrue|D) is consistently greater than 0.5 (and close to 1 in most cases).

Figure 9 shows the results obtained on the DNA sequence alignment with the
mosaic structure. Both subfigures show a plot of the predicted marginal posterior
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Figure 9: Mosaic DNA sequence alignment
The figure shows the predictions obtained with the original PFHMM of Husmeier
(2005) versus the improved PFHMM proposed in the present paper. Both mod-
els were applied to a synthetic DNA sequence alignment with mosaic structure,
where the branch length configuration in the central segment lies in the Felsenstein
zone; see the description in Section 3. Each panel shows a plot of the predicted
marginal posterior probabilities P (St = Ψi|D) for the three possible tree topologies
i ∈ {1, 2, 3}, where the true topology corresponds to the panel in the top. The
vertical axes show the marginal posterior probabilities, while the horizontal axes
represent the site t in the alignment. The original PFHMM, shown in Subfigure
a), predicts a spurious topology change in the central segment, which is avoided
with the improved PFHMM, shown in Subfigure b). Subfigure b) is an average over
5 independent simulations showing that the spurious topology change is avoided
consistently.

probabilities P (St = Ψi|D), for the three possible tree topologies i ∈ {1, 2, 3}, plot-
ted against the position t in the alignment. The left subfigure shows the prediction
obtained with the original PFHMM of Husmeier (2005). There is a clear transition
into a different tree topology in the central region, where the branch length configura-
tion [d2, d3] lies in the Felsenstein zone. This confirms our conjecture that PFHMM
is susceptible to the prediction of spurious topology changes. The right panel shows
the prediction made with the improved PFHMM averaged over 5 independent simu-
lations. The posterior probability for the correct tree topology, P (St = Ψtrue|D), is
consistently close to 1, indicating that the prediction of spurious topology changes
is avoided.

8 Discussion

In our paper, we have investigated a possible shortcoming of three recent Bayesian
methods for detecting recombination in DNA sequence alignments: the multiple
change-point (MCP) model of Suchard et al. (2003), the dual multiple change-point
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(DMCP) model of Minin et al. (2005), and the phylogenetic factorial hidden Markov
model (PFHMM) of Husmeier (2005). All three models assume separate branch
lengths for different sites, which allows the branch lengths to be integrated out
analytically. This reduces the computational complexity of the Bayesian inference
scheme, which can now be formulated in terms of posterior distributions of the
tree topologies and the nucleotide substitution parameters only. This makes the
approach quite popular, and it has been applied in more recent works; see Lehrach
(2008) and Lehrach and Husmeier (2009).

Note that the model of site-independent branch lengths, as expressed in eq. (20),
was first introduced by Tuffley and Steel (1997), where it was called the “no-
common-mechanism” model. In combination with the prior independence of the
branch length components, expressed in eq. (13), the vector of branch lengths can
be integrated out in the likelihood, as shown by Suchard et al. (2003), and dis-
cussed in Section 2.4. However, in the no-common-mechanism model, the branch
lengths are incidental rather than structural parameters. As discussed in Goldman
(1990), this implies that maximum likelihood is no longer guaranteed to provide
a consistent estimator. In fact, Tuffley and Steel (1997) showed that under cer-
tain regularity conditions, maximum parsimony and maximum likelihood with no
common mechanisms are equivalent. This suggests that maximum likelihood with
no common mechanisms will be susceptible to the prediction of wrong tree topolo-
gies for certain branch length configurations (long branch attraction). To confirm
this hypothesis, we have generated synthetic DNA sequence alignments with the
HKY nucleotide substitution model (Hasegawa et al., 1985) in the vein of Felsen-
stein’s seminal study for demonstrating the inconsistency of maximum parsimony
Felsenstein (1978), and we have estimated the marginal posterior probability for
the tree topology in two different ways: using an inter-model approach, in which
tree topologies are sampled from the posterior distribution with MCMC; and ap-
plying an intra-model approach, in which the marginal likelihood is estimated with
annealed importance sampling. Both studies consistently reveal that as a conse-
quence of the separate site-dependent branch lengths, the mode of the posterior
distribution is systematically shifted to a wrong tree topology whenever the branch
length configuration of the data-generating tree falls into the Felsenstein zone. The
inferred tree topology with the highest posterior probability is the one in which the
long branches are grouped together. This finding suggests that as a consequence
of the aforementioned independence assumption (i.e., the “no-common-mechanism”
model of separate site-dependent branch lengths), the resulting model suffers from
the same inconsistency (long-branch attraction) as the method of maximum par-
simony. We have further confirmed this conjecture by applying the recombination
detection methods DMCP and PFHMM to the DNA sequence alignments generated
in our study, using the authors’ programs. Again, we found a systematic failure in
the Felsenstein zone, where consistently the wrong tree topology was inferred. This
suggests that these recombination detection methods are susceptible to predicting
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spurious recombination events whenever branch-length configurations happen to fall
near the boundary of the Felsenstein zone.

We have concluded our study with a demonstration of how the PFHMM can be
improved to avoid this shortcoming. In principle this can be achieved by removing
the site-independence assumption for the branch lengths. As a consequence, how-
ever, the analytic integration over the branch lengths is no longer tractable, which
requires them to be sampled approximately from the posterior distribution with
MCMC. To avoid an identifiability problem resulting from the fact that the global
scaling of the branch lengths (defined by one of the two types of hidden states) is an
additional independent parameter of the model, we have imposed a normalization
constraint on the branch lengths, which can easily be effected by the choice of a
suitable proposal distribution in the MCMC scheme. We have tested the proposed
method on the same DNA sequence alignments as for the other models, and found
that it succeeded in avoiding the failure in the Felsenstein zone.

Note that in the proposed phylogenetic PFHMM, each hidden state is associ-
ated with a distinct tree topology. The number of tree topologies increases super-
exponentially with the number of taxa; for this reason, we have applied our model
to DNA sequence alignments of four sequences only, as in Husmeier and McGuire
(2003). There are various heuristic simplifications one could adopt in order to apply
the method to sequence alignments with more than four taxa. One method would
be to apply a preliminary phylogenetic analysis to consecutive subsets of the DNA
sequence alignment, effected for instance in the way described in Husmeier et al.

(2005b). The phylogenetic FHMM would then include only those topology states
that match one of the tree topologies inferred in the preliminary analysis. Another
method would be to proceed in the way described in Minin et al. (2005). Here, the
assumption is that we are given a sequence alignment composed of N-1 nonrecombi-
nant and 1 putative recombinant strain. Additionally, it is assumed that the tree of
the N-1 nonrecombinant sequences is known or that it can easily be inferred. The
states of the phylogenetic FHMM are restricted to the set of those tree topologies
that are obtained by adding a new leaf node to any branch in the fixed parental tree
withN−1 nonrecombinant taxa. Both of these heuristic simplifications substantially
restrict the set of permissible tree topologies, thereby rendering the application of
the phylogenetic FHMM to larger alignments viable. Note, though, that in principle
these restrictions are not necessary. Our method could in principle be implemented
with a transdimensional MCMC scheme using reversible jumps associated with the
birth and death of topology states, where each birth creates a new tree topology
derived from the adjacent topology by some local modification, e.g. using near-
est neighbour interchange. However, the computational costs of such an approach
would be huge, and it would pose a challenging problem for novel high-performance
distributed computing techniques.

It has been pointed out by one of the referees that our work is closely related
to the work of Huelsenbeck et al. (2008). Like in our paper, the authors investigate
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a Bayesian implementation of the no-common-mechanism model, and they empiri-
cally demonstrate that this model is not consistent and shows a systematic failure
in the Felsenstein zone. There are various ways in which our study complements
this work. Firstly, Huelsenbeck et al. (2008) use a fully symmetric nucleotide sub-
stitution model that makes no distinction between any character states (the Jukes-
Cantor model). For this model, Tuffley and Steel (1997) showed that maximum
parsimony and maximum likelihood with no common mechanism are equivalent in
the sense that both choose the same tree. Hence, the work of Huelsenbeck et al.

(2008) can be seen as an empirical corroboration of the theoretical findings in
Tuffley and Steel (1997). Our study complements this work by using the HKY model
(Hasegawa et al., 1985) as a more general and more widely applied nucleotide sub-
stitution model, for which no theoretical proof was given in Tuffley and Steel (1997).
Secondly, Huelsenbeck et al. (2008) use fixed parameters for the prior distribution
on the branch lengths and find that these parameters “play an inordinately strong
role in determining the probabilities of the trees”. In our work on the homogeneous
DNA sequence alignment, we use a hierarchical Bayesian model with an extra layer
(a hyperprior) – see Figures 2 and 3 – and infer the parameters of the prior from
the data. In our work on the DNA sequence alignment with mosaic structure, we
use a phylogenetic FHMM, in which the parameters of the prior distribution are as-
sociated with different hidden states. The assignment of these hidden states to sites
is inferred from the data. Thirdly, one has to appreciate that there is no sufficient
criterion to prove that an MCMC simulation has converged. For this reason comput-
ing the posterior probabilities of tree topologies with an alternative paradigm, as we
do in our intra-model approach based on annealed importance sampling, offers an
independent corroboration of the findings. Fourthly and most importantly, however,
there has been a completely different focus of our work. The motivation for the work
of Huelsenbeck et al. (2008) has been the development of a new Bayesian MCMC
scheme for learning tree topologies from sequence alignments that are adequately
described by a single tree. The focus of our study is the prediction of recombina-
tion and mosaic structures in DNA sequence alignments, and it has been motivated
by three recent detection methods that are based on the no-common-mechanism
model. These models are more flexible than the single-tree model investigated by
Huelsenbeck et al. (2008). In particular, they allow for breakpoints in the DNA
sequence alignment at which the tree topology may change. While this mecha-
nism provides the extra flexibility required for dealing with recombination, we have
shown that in combination with site-independent branch lengths (the no-common-
mechanism of Tuffley and Steel (1997)), the resulting model becomes susceptible to
predicting spurious topology changes and recombination breakpoints.
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9 Future work

The phylogenetic FHMM proposed in Section 6 of our paper provides a trade-off
between two extreme scenarios: the homogeneous model, which employs the same
branch lengths for the whole alignment, and the no-common-mechanism model. The
first approach is too restrictive. In the second approach, the branch lengths are in-
cidental rather than structural parameters, resulting in the inconsistency problems
discussed in the present paper. The proposed phylogenetic FHMM contains a hid-
den factor by which the branch lengths are rescaled. This scaling factor is site
dependent via its association with a hidden state of the FHMM. Since the number
of hidden states is finite, and each hidden state can be revisited repeatedly when
traversing along the alignment, all parameters of the model are structural (rather
than incidental). In this way, the consistency of our model is guaranteed. However,
while our model is appropriate to incorporate the effects of rate heterogeneity, it is
too restrictive when dealing with certain recombination events that do not induce
a tree topology change. This can happen when, in the coalescence tree, recombi-
nant lineages coalesce before merging with any other lineage (Wiuf et al., 2001). In
certain scenarios, discussed in Wiuf et al. (2001), this can result in a more complex
change of the branch lengths than can be modelled by a global rescaling. One way
to proceed would be the following modification of our model. Rather than asso-
ciating the second hidden state with a global scaling factor, we could associate it
with a separate vector of branch lengths. In this model there would no longer be
a common branch length vector, but the branch lengths would be site-dependent,
as in the no-common-mechanism model. The substantial difference from the no-
common-mechanism model would be that in the new model the site dependence is
effected indirectly via a hidden state. Since the number of hidden states is finite,
and the hidden states can be revisited (at least as long as all transition probabilities
are non-zero), the new model contains structural rather than incidental parame-
ters. In this way, its consistency is guaranteed. Note, however, that this model is
more complex than the one proposed in our paper. In particular, it will require
the number of hidden states and their associated parameters to be properly in-
ferred from the data rather than chosen in advance. This calls for the development
of a trans-dimensional MCMC scheme with RJMCMC (Green, 1995), as applied
in the studies by Suchard et al. (2003), Minin et al. (2005), Lehrach (2008) and
Lehrach and Husmeier (2009). We believe that this would be an important and
stimulating topic for future research.

When extending the phylogenetic FHMM along the line discussed in the previous
paragraph, one has to decide on the appropriate form of the prior distribution on
tree topologies. It is a common approach in Bayesian analysis to use a uniform prior
distribution. The intention is to reflect our prior level of ignorance, as especially
promoted by the school of “objective Bayesianism”. The question, then, is what
exactly it is that we are ignorant about. A prior distribution that is uniform over

32



tree topologies is not uniform over labelled histories or clade formations, where the
latter inconsistency has been used to (erroneously!) question the validity of the
Bayesian approach per se (Pickett and Randle, 2005). As pointed out by Velasco
(2008), the ignorance should be expressed in terms of the physical processes that
generate the entities of interest. A phylogenetic tree is the result of the biological
process of common ancestry and descent with modification, which can be modelled
by a Yule random branching process (forward in time) or a coalescence process
(backward in time). Kingman (1982) and Thompson (1975) showed that under
certain regularity conditions, the Yule birth process, the Yule birth-death process
and the coalescence process lead to the same distribution. This distribution is
uniform over labelled histories (Edwards, 1970), which induces a prior distribution on
tree topologies that is no longer uniform. In particular, Velasco (2008) showed that
a tree topology that is more balanced (as opposed to pectinate) is consistent with
more labelled histories and, consequently, has a higher prior probability. An early
application of this approach can be found in Yang and Rannala (1997). However, the
computational costs were found to be huge – about two orders of magnitude larger
than those of the competing method of Larget and Simon (1999). It therefore will
pose a substantial computational challenge for future work to render the approach
based on labelled histories viable in the context of the model proposed in the present
paper.

Appendix: Details of the Gibbs sampling scheme used
for the improved phylogenetic FHMM

We briefly describe the Gibbs sampling procedure that we used for the improved
phylogenetic FHMM described in Section 6.

We sampled the hidden state sequences and model parameters according to the
Gibbs sampling scheme described in Sections 4 and 5. We carried out 200 Gibbs
sampling steps in the burn-in phase, and 200 steps in the sampling phase. Recall
that each Gibbs sampling step includes a set of Metropolis-Hastings (MH) steps for
adapting the branch lengths, according to equations (51) and (54). Within each
Gibbs step, we carried out 200 MH steps for the MH burn-in phase, and 1200 MH
steps for the MH sampling phase. The final branch length vector was kept, and
constituted the output of the Gibbs sampling step (51). During the MH burn-in
phase, the parameter α of the proposal distribution (52) was adjusted, as described
in Section 6. We used the MH sampling phase to compute, for all branch lengths,
the potential scale reduction factor of Gelman and Rubin (1992).

For the simulations thus carried out, we found that the potential scale reduction
factor was consistently smaller than 1.1, indicating a satisfactory degree of conver-
gence. The marginal posterior probabilities of the topology states, P (St = Ψk|D),
were computed straight from the state sequences {Si} sampled during the sampling
phase of the Gibbs sampling scheme by application of (47); the results are shown in
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Figures 8 and 9.
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