
Dynamic Targeting in an Online Social Medium

Abstract. Online human interactions take place within a dynamic hi-
erarchy, where social influence is determined by qualities such as status,
eloquence, trustworthiness, authority and persuasiveness. In this work,
we consider topic-based Twitter interaction networks, and address the
task of identifying influential players. Our motivation is the strong desire
of many commerical entities to increase their social media presence by
engaging positively with pivotal bloggers and tweeters. After discussing
some of the issues involved in extracting useful interaction data from
a Twitter feed, we define the concept of an active node subnetwork se-
quence. This provides a time-dependent, topic-based, summary of rel-
evant Twitter activity. For these types of transient interactions, it has
been argued that the flow of information, and hence the influence of a
node, is highly dependent on the timing of the links. Some nodes with
relatively small bandwidth may turn out to be key players because of
their prescience and their ability to instigate follow-on network activity.
To simulate a commercial application, we build an active node subnet-
work sequence based on key words in the area of travel and holidays.
We then compare a range of network centrality measures, including a
recently proposed version that accounts for the arrow of time, with re-
spect to their ability to rank important nodes in this dynamic setting.
The centrality rankings use only connectivity information (who Tweeted
whom, when), but if we post-process the results by examining account
details, we find that the time-respecting, dynamic, approach, which looks
at the follow-on flow of information, is less likely to be ‘misled’ by ac-
counts that appear to generate large numbers of automatic Tweets with
the aim of pushing out web links. We then benchmark these algorith-
mically derived rankings against independent feedback from five social
media experts who judge Twitter accounts as part of their professional
duties. We find that the dynamic centrality measures add value to the
expert view, and indeed can be hard to distinguish from an expert in
terms of who they place in the top ten. We also highlight areas where
the algorithmic approach can be refined and improved.

1 Motivation

Centrality measures have proved to be extremely useful for identifying important
players in an interaction network [27]. Although the fundamental ideas in this
area were developed to analyse a single, static network, there is a growing need
to develop tools for the dynamic case, where links appear and disappear in a
time-dependent manner. Key application areas include voice calls [9, 14], email
activity [3, 14], online social interaction [29], geographical proximity of mobile
device users [17], voting and trading patterns [1, 25] and neural activity [4, 12].

This work focuses on the use of centrality measures to discover influential
players in a dynamic Twitter interaction network, with respect to a given topic,
with the aim of finding suitable targets from a marketing perspective. In this
social interaction setting, the idea of key players, who influence the actions of
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others, is intuitively reasonable. Emperical evidence is given in [11] for discus-
sion catalysts in an on-line community who are “responsible for the majority
of messages that initiate long threads.” Further, Huffaker [16] identifies on-line
leaders who “trigger feedback, spark conversations within the community, or
even shape the way that other members of a group ‘talk’ about a topic.”. Ex-
periments in [24] on email and voice mail data found evidence of individuals
“punching above their weight” in terms of having an ability to disseminate or
collect information that cannot be predicted from static or aggregate summaries
of their activity. These people were termed dynamic communicators, and an ex-
planatory model, based an inherent hiererchy among the nodes, was suggested.
Such concepts make it clear that the dynamic nature of the links plays a key
role—the timing and follow on effect of an interaction must be quantified if key
players are to be identified. A recent business-oriented survey [6, Section 4] lists
network dynamics as a key technical challenge, and the authors in [28] argue
that “the temporal aspects of centrality are underepresented.”

Several recent articles have addressed the issue of discovering important or
influential players in networks derived from Twitter data. The work in [2] focused
on how a shortened URL is passed through the network. Using the premise that
a person who passes on such a URL has been influenced by the sender, it studies
the structure of cascades. Related work in [23] looked at large scale information
spread on the Twitter follower graph in order to measure global activity. The
authors in [8] studied a large scale Twitter follower graph and compared three
meaures that quantify types of influence: number of followers (out degree), num-
ber of retweets and number of mentions, finding little overlap between the top
Tweeters in each category. Similarly, [22] also ranked users by the number of
followers and compared with ranking by PageRank, finding the two measures to
be similar. By contrast, they found that the retweet measure produces a very dif-
ferent ranking. We note that none of the influence measures considered in [8, 22]
fully respect the time-ordering of Twitter interactions. For example, reversing
the arrow of time does not change the count of followers, retweets or mentions.
In this sense, they overlook a crucial aspect of the interaction data. Our work
differs from that described above by (a) focussing on subject-specific Tweets of
interest in a typical business application, (b) building the interactions between
Tweeters on this topic and recording them in a form that we call the active
node subnetwork sequence, and (c) comparing a range of centrality measures
in this dynamic setting, including one that respects the arrow of time, against
independent hand curated rankings from social media experts exposed to the
same data.

2 Building the Active Node Subnetwork Sequence

The Twitter business home page at https://business.twitter.com/basics/what-is-twitter/

explains that

“Anyone can read, write and share messages of up to 140 characters on
Twitter. These messages, or Tweets, are available to anyone interested
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in reading them, whether logged in or not. Your followers receive every
one of your messages in their timeline—a feed of all the accounts they
have subscribed to or followed on Twitter. This unique combination of
open, public, and unfiltered Tweets delivered in a simple, standardized
140-character unit, allows Twitter users to share and discover what’s
happening on any device in real time. ”

The number of active Twitter users currently exceeds 140 Million, with over 340
Million Tweets generated per day. Of direct relevance to our work, the business
home page adds that

“Businesses can also use Twitter to listen and gather market intelligence
and insights. It is likely that people are already having conversations
about your business, your competitors or your industry on Twitter. ”

Twitter is a means to send out information over a well-defined network. This
brings to life a scenario that social scientists have for many years been using as
a theoretical tool to develop concepts and measures. In particular, given only a
network interaction structure, perhaps describing social acquaintanceship, it has
proved extremely useful to imagine that information flows along the links and
thereby to identify important actors [10, 27]. In this setting, most centrality mea-
sures are defined through, or can be motivated from, the idea of studying random
walks along the edges [26], or deterministically counting geodesics, paths, trails
or walks [7]. These ideas have been extremely well accepted and widely used,
despite the obvious simplifications that the methodology involves. For example,
even if we accept that social acquaintanceship is a reasonable proxy for the links
along which information flows, there are issues concerning

link types: if A and B are acquainted professionally and A passes on some
work-related news to B, then it is reasonable to expect that B is more likely
to pass this news on to professional colleagues than other friends. So we could
argue that some A→B→C paths have a greater chance of being traversed
than others.

link dynamics: if A and B meet only on a Sunday evening, and B and C
meet only on a Monday morning, then we could argue that even though the
undirected path A ↔ B ↔ C exists in the network, the route A→B→C is
a more likely conduit for news than C→B→A. This is because B meets C
soon after an A→B exhange, and hence is more likely to (a) remember and
(b) regard as topical, any information received from A. This gives another
sense in which paths are not created equal.

By exploiting features of the Twitter data, we can, to some extent, sidestep
the shortcomings above while retaining the elegance and simplicity of the network-
based view:

link types: each link represents a physical exchange of information that is
known to have taken place (rather than a proxy such as social acquain-
tanceship), and moreover, by filtering based on Tweet content, we can, in
principle, record only links that are relevant to a specific topic of interest,
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link dynamics: the Twitter data gives us access to the time at which each
piece of information was disseminated.

Twitter’s follower graph, where nodes represent users and a directed link
connects a user to a follower, has been studied, for example, in [8, 22, 23]. In our
work, we wish to focus on users who are engaging with a particular topic, so a
natural first step is to look at those who send Tweets containing a predefined
set of phrases. In principle, the followers of all such users are exposed to the
information in those Tweets. However, in practice we do not know if or when a
follower reads a Tweet or acts upon it outside the Twitter platform. In this work,
we focus on clearly active nodes, that is, users who send out at least one Tweet
on the required topic. We then focus on directed user-to-follower connections
that involve these active nodes. As well as ruling out those Tweets that land on
‘stony ground’ this pruning exercise generally has the effect of reducing the size
of the network considerably; an issue that is of importance if we wish to consider
global Tweets about popular topics over long time scales.

To be precise, we use the Twitter feed to construct an active node subnetwork
sequence as follows.

Definition 1 The active node subnetwork sequence:

– Start the clock at time tstart
– Listen to all Tweets that contain the required phrase(s)
– Each time a new Tweet is recorded, make sure the sender and all the sender’s

followers are nodes in the network (i.e. add them if necessary), and add a
time-stamped directed link from the sender node to all follower nodes.

– Stop the clock at time tend
– Post-process the network by removing all nodes that have zero aggregate out

degree, i.e., remove those people who did not send out any relevant Tweets.
– Slice the data into M windows of size ∆t = (tend − tstart)/M . We will let
tk = tstart + (k − 1)∆t. Then, for k = 1, 2, . . . ,M , the kth window covers
the time period [tk, tk+1] and is represented by an integer-valued matrix A[k].
Here (A[k])ij records the number of links from node i to node j that appeared
in this time period.

– Binarize each (A[k])ij, that is, set all positive integers to the value 1. (See
the remark below for a discussion of this step.)

Implicit in this definition is the simplifying assumption that a Tweet has
an influence over a fixed period of time, ∆t. It may be argued that a Tweet,
once sent, exists for ever and should create a permanent link that perpetuates
across all subsequent time windows. However, we believe that a more compelling
argument is that Tweets are time-sensitive and fairly rapidly disappear down a
typical follower’s timeline. The choice of ∆t then quantifies the typical “read
and respond” time.

We emphasize in particular that reducing ∆t does not necessarily give a more
accurate representation of reality—although we know the precise time that the
Tweet was sent, we do not know if or when each follower digests the content.
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On the other hand taking ∆t too large (e.g. one giant window) causes us to lose
information about the time-ordering of the Tweets.

We constructed an active node subnetwork sequence by listening to Tweets
containing the phrases city break, cheap holiday, travel insurance, cheap
flight and two phrases relating to specific travel brands. This simulates a typi-
cal client-driven investigation on behalf of a travel company wishing to improve
its social media presence. The collection took place from 17 June 2012 at 14:41
to 18 June 2012 at 12:41. We took ∆t equal to 66 minutes, producing 20 time
windows. The total number of Tweeters and followers associated with this data
set is 442, 948. Restricting attention to active nodes, with nonzero out degree,
reduced the network size to N = 590.

We observed that some accounts can Tweet a lot in a short space of time. One
account Tweeted 104 times in timeframe 10 and a further 23 times in timeframe
11. This account released a total of 127 Tweets in 68 minutes. This motivates our
decision to binarize the data within each window—in this way we have not taken
account of how many times an account Tweets, but rather we represent the fact
they did Tweet in that timeframe. This is done to try to stop the overall result
being influenced by accounts using a high volume of automated Tweets. This
choice is a balance between allowing a “noisy” account broadcasting automated
Tweets to score higher than we would like in our calculations against our ability
to pick out influential people by observing a natural increase in the rate of
conversation because something interesting or relevant is happening.

To give a feel for the data, Figure 1 visualizes two portions of the the network
at the end of the first time window.

Fig. 1. Two details from the active subnode network sequence at the end of the first
time window; in particular, showing the existence of an isolated community.

We will return to this data set in section 4 when we compare centrality
meaures.
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3 Centrality Measures

In the case of a single time point, with binary adjacency matrix A ∈ RN×N , the
resolvent matrix (I−αA)−1 was proposed by Katz [18] as a means to summarize
pairwise “influence” under “attenuation through intermediaries.” Here the fixed
parameter α governs the strength of the attenuation, and for 0 < α < 1/ρ(A),
where ρ(A) denotes the spectral radius of A, we have

(I − αA)−1 = I + αA+ α2A2 + α3A3 + . . .

Using the fact that (Ap)ij records the number of distinct walks1 of length p from
node i to node j [10], we see that the (i, j) element of (I−αA)−1 counts the total
number of walks of all possible length, with walks of length p downweighted by
αp. The idea of attaching less importance to longer walks is intuitively reason-
able, and Katz [18] also points out that α may be intepreted probabilistically, as
the chance that a message successfully traverses an edge. It follows that the row
sums and column sums of the resolvent quantify the ability of nodes to broadcast
and receive information, respectively. Rather than inverting I − αA, it is more
efficient and numerically accurate to solve a linear system. Hence in our tests we
will compute vectors Kb and Kr in RN satisfying

(I − αA)Kb = 1, (I − αAT )Kr = 1, (1)

where 1 ∈ RN is the vector with all entries equal to one. In this case the ith
components of Kb and Kr measure the ability of node i to broadcast and receive
messages, respectively, across the static network represented by the binary adja-
cency matrix A, in the sense of Katz. The nodes may then be ranked according
to these scores.

In the limit α → 0, longer walks make a negligible contribution in (1), and,
ignoring uniform shifts and scalings that do not alter the rankings, the measures
collapse to out degree and in degree, respectively, that is,

(degout)i =

N∑
j=1

aij , (degout)j =

N∑
i=1

aij . (2)

We note that these two quantities are also widely used as centrality measures in
their own right [10, 27].

In recent years, several authors have pointed out that concepts such as
geodesics, paths and walks can be extended to the case of a time-ordered se-
quence of networks [5, 15, 19–21, 25]. We focus here on the dynamic walk notion
from [14] which produces generalizations of the Katz centrality measures (1) that
are feasible for large-scale network computations. Using the notation introduced
in section 2, the following definition was made in [14].

1 A walk of length w from node i to node j is characterized by a sequence of w edges
i → i1, i1 → i2,. . . , iw−1 → j. There is no requirement for the edges, or the nodes
that they connect, to be distinct.
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Definition 2 A dynamic walk of length w from node i1 to node iw+1 consists
of a sequence of edges i1 → i2, i2 → i3, . . . , iw → iw+1 and a non-decreasing

sequence of times tr1 ≤ tr2 ≤ . . . ≤ trw such that A
[rm]
im,im+1

6= 0.

Dynamic walks are easily counted by forming appropriate matrix powers. For
example, with the (i, j) component relating to walks from node i to node j,

– A[1]A[2] counts all dynamic walks of length two that use one edge at time t1
followed by one edge at time t2,

– A[3]A[4]A[6] counts all dynamic walks of length three that use one edge at
each time t3, t4 and t6, in that order.

– A[5]A[5]A[9]A[10] counts all dynamic walks of length four that use two edges
at time t5, and then an edge at time t9 and finally an edge at time t10.

Following the Katz idea of downweighting walks of length w by αw, this leads
to the expression(

I − αA[1]
)−1 (

I − αA[2]
)−1

· · ·
(
I − αA[M ]

)−1

as a summary of the number of dynamic walks that exist between each pair of
nodes. In this case, α should be chosen below the reciprocal of max1≤k≤M ρ(A[k]).

Expressing these computations in terms of sparse linear systems, rather than
matrix inversions, and normalizing to prevent underflow and overflow, we arrive
at the dynamic broadcast and receive centralities from [14] given by

Db := Db[1], Dr := Dr[M ], (3)

where the vector sequence {Db[r]}M+1
r=1 is computed iteratively by setting Db[M+1] =

1 and then solving (
I − αA[r]

)
Db[r] = Db[r+1]

and normalizing

Db[r] 7→ Db[r]

‖Db[r] ‖2
,

for r = M,M − 1, . . . , 1. Similarly, a vector sequence producing the receive
centralities may be computed by setting Db[0] = 1 and then solving(

I − α
(
A[r]

)T)
Db[r] = Db[r−1]

and normalizing

Db[r] 7→ Db[r]

‖Db[r] ‖2
,

for r = 1, 2, . . . ,M . Here AT denotes the transpose of A.



VIII

4 Experimental Results

4.1 Comparison of Network Centrality Measures

Using the holiday travel based active node network sequence described in sec-
tion 2, we now compare the six centrality measures outlined in section 3. In order
to apply the measures designed for static networks, we formed a single thresh-
olded binarized network, B. To do this, we first formed the time-aggregate matrix
Asum :=

∑M
k=1A

[k]. Then we thresholded based on a value θ, so that

(B)ij =

{
1 if (Asum)ij ≥ θ,
0 otherwise.

Here θ is chosen so that the number of edges in B matches, as closely as possible,
the average number of edges in {A[k]}Mk=1. For convenience, we use the following
descriptors:

– Katz broadcast and Katz receive denote the centrality measures in (1)
applied to the thresholded binarized network. We used α = 0.9/ρ(B).

– Dynamic broadcast and dynamic receive denote the centrality measures
(3) on the active node subnetwork sequence. We used α = 0.9/maxk ρ(A[k]).

– Out degree and in degree denote the row sums and column sums of Asum

respectively; the rankings based on these measures are equivalent to the
α→ 0 rankings from dynamic broadcast and receive.

Because our aim is to indentify influential Tweeters, we intuitively expect
the three broadcast-based measures (out degree, Katz broadcast and dynamic
broadcast) to be more useful than the three receive-based measures (in degree,
Katz receive and dynamic receive) in this context.

Each of these six centrality measures produces a vector in R590, which can be
used to determine (up to ties) a ranking, that is, a permutation of the integers
1 to 590. There are, of course, many ways to compare these different measures.
The upper panel in Table 1 shows the Kendall tau and Spearman rho correlation
coefficients for each pairwise combination of measures. In the context of using the
measures to identify important nodes, rather than looking at correlation across
the entire set of centralities it is perhaps more meaningful to focus on those
nodes that are identified as important. The lower panel in Table 1 therefore
shows the overlap, that is, the number of common nodes, among the top ten
and and top twenty lists in a pairwise manner. The tables indicate a slightly
higher match within, rather than across, the broadcast-based meaures and the
receive-based measures, although this is not completely consistent; for example
Katz broadcast and Katz receive have the highest pairwise correlations.

For a visual overview, Figures 2 and 3 scatter plot the dynamic broadcast
centrality against each other measure. In Figure 2 we see that dynamic broad-
casting and dynamic receiving are quite different achievements. One node comes
top in both measures, and from Table 1 we see that 16 nodes appear in both
top 20 lists. However, the orderings within the top twenty are clearly different.
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out degree in degree Katz broadcast Katz receive dynamic broadcast dynamic receive
out degree 0.48 0.34 0.35 0.60 0.46
in degree 0.48 0.43 0.46 0.47 0.64

Katz broadcast 0.31 0.42 0.87 0.34 0.42
Katz receive 0.33 0.47 0.88 0.36 0.45

dynamic broadcast 0.69 0.52 0.32 0.35 0.49
dynamic receive 0.47 0.73 0.41 0.45 0.54

out degree in degree Katz broadcast Katz receive dynamic broadcast dynamic receive
out degree 2 5 2 6 3
in degree 6 1 1 2 2

Katz-broadcast 11 3 3 6 3
Katz-receive 4 7 4 3 9

dynamic broadcast 6 4 7 15 4
dynamic receive 4 5 5 18 16

Table 1. Upper panel shows Kendall tau correlation across pairs of node rankings in
upper triangle and Spearman rho correlation across pairs of node rankings in lower
triangle. Lower panel shows overlap between top 10 across pairs of node rankings in
uppper triangle and overlap between top 20 across pairs of node rankings in lower
triangle

Perhaps most noticably, the fourth highest dynamic broadcaster ranks relatively
poorly according to dynamic receive. Further investigation revealed that this
account belongs to a travel insurance brand. The account (id = 342) appears to
supply automated Tweets on the subject of insurance. (In the exercise reported
in subsection 4.2, the social media experts ranked this account as mid-range
because the Tweets generated were not personalised according to best practice.)

In the upper left picture of Figure 3 the second highest dynamic broadcaster
stands out as having a relatively low Katz broadcast measure. This account
(id = 398) Tweets stories about travel. As with account 34 discussed above,
there were a lot of automated Tweets. This appears to be an account that is
looking to send out, rather than receive, links, and most Tweets contain links to
websites—however the content of the Tweets was felt to be relevant to the topic,
which is why the account appears in third place in the overall expert summary
of subsection 4.2 (Table 4).

In the upper right picture of Figure 3 the first and third best Katz receivers
(id = 388 and 394, respectively) are seen to have very poor dynamic broadcast
measure. These accounts belong to news aggregators Tweeting about travel and
other news. They passed on similar information and have a similar follower
profile.

The fourth higest out degree node is seen in the lower left picture of Figure 3
to be a very poor dynamic broadcaster. This unusual account (id = 341370)
Tweeted about lots of different topics but has only 35 followers. This case caused
an interesting split between the social media experts during the exercise dis-
cussed in subsection 4.2. Two experts rated the account as mid range and three
rated it lowest of those considered. On closer inspection, we found that the ac-
counts which were subsequently retweeting exhibited some strange behaviour

2 The id numbers are local to this experiment and have no further significance.
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that was not obvious at first glance. Figure 4 illustrates one set of retweets, sug-
gesting that an automated process is at work in the retweeting operation, in an
effort leverage influence.

More generally, it is clear from Figure 3 and Table 1 that high out degree
nodes can have very poor dynamic broadcast centrality—generating a high band-
width does not directly translate into effective communication in this sense.
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Fig. 2. Dynamic broadcast against dynamic receive for the active nodes.

In the lower right picture of Figure 3 there are three accounts with very high
in degree that are not good dynamic broadcsters. The highest in degree account
(id = 172) belongs to a holiday company based in Kauai, Hawaii, Tweeting
about holidays there. The account produces some automated Tweets but they
do not appear to be designed simply to publicize links. The next (id = 158)
was regarded by the experts as the most heavily automated of those considered,
generating Tweets on a wide range of subjects, not focused in any area, with the
apparent aim of link distribution. The third (id = 31) was a news aggregator in
the manner of accounts 388 and 394 discussed above.

4.2 Results from Social Media Experts

In order to benchmark the centrality results, we enlisted the help of five profes-
sionals working in social media who have day-to-day experience of ranking and
targeting accounts based on Twitter data. It is not feasible to study by eye the
full set of dynamic interaction data across the 590 active nodes—indeed, this is
a key motivation for the use of automated tools. Hence, in collaboration with
social media professionals, and with the aid of the six centrality measures, we
focused attention on a list of 41 accounts that were felt to be highly relevant.
The five experts were then given access to the full details of the Tweets from this
list, including the content of their messages, and asked to rank them in order of
importance. They had no knowledge of the six centrality rankings.

Table 2 records the level of consistency between the five experts, in terms
of Kendall tau correlations across the 41 accounts and overlap between the top
10 in each list. We see that although the correlation is generally positive, there
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Fig. 3. Dynamic broadcast against: upper left: Katz broadcast, upper right: Katz re-
ceive, lower left: out degree, lower right: in degree, for the active nodes.

Fig. 4. Retweet times for a Tweet emerging from account id 341370.
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is some considerable variation between the views. Hence, although we regard
this information as providing a very useful guide, we do not see it as a “gold
standard” with which to judge centrality measures in this context.

Expert 1 Expert 2 Expert 3 Expert 4 Expert 5
Expert 1 -0.10 0.93 0.19 0.33
Expert 2 5 -0.10 0.31 0.14
Expert 3 10 3 0.20 0.37
Expert 4 6 5 6 0.55
Expert 5 6 5 6 5

Table 2. Upper: Kendall tau correlation between rankings of the 41 Tweeters from
pairs of experts. Lower: overlap amongst top ten in rankings of the 41 Tweeters from
pairs of experts.

For Table 3 we merged the five different expert rankings of the 41 nodes,
giving equal weight to each, into a single list. We then compared this ‘average
expert’ with the rankings of these 41 nodes produced by each of the six centrality
measures. We show the top ten overlap. Comparing with the results in Table 2,
it may be argued that at least three of the centrality measures are almost indis-
tinsguishable from experts in this sense. To give more insight, Table 4 shows the
top 10 list for the averaged expert and the three broadcast-based centralities.
We see that dynamic broadcast has a top three that includes two of the experts’
top three. Out degree and Katz broadcast have one such ‘correct’ answer in their
top three. We also note that the centrality rankings are closer to each other than
to the average expert, in terms of overlap.

out degree in degree Katz broadcast Katz receive dynamic broadcast dynamic receive
Overlap 4 3 2 1 3 2

Table 3. Overlap amongst top ten for each of the six centrality meaures against the
average over five experts.

average expert out degree Katz broadcast dynamic broadcast
397 74 74 74
362 34 302 398
398 362 362 362
341 341370 358 34
289 358 375 358
345 71 34 302
462 345 341 397
212 398 352 352
71 352 200 373
18 484 409 380

Table 4. Account ids in rank order from 1 to 10. Column 1: average over five experts.
Column 2: out degree. Column 3: Katz broadcast. Column 4: dynamic broadcast.
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5 Summary and Future Work

Our aim in this work was to investigate the use of network centrality mea-
sures on appropriatelty processed Twitter data as a means to target influential
nodes. We found that these measures can extract value, both in isolation and
when combined, especially when the time-dependent nature of the interactions
is incorporated. In particular, benchmarking against the views of five experts
in social media showed that the dynamic broadcast centrality results are, in
the sense of overlap at the important upper end, hard to distinguish from hand
curated expert rankings.

There are many open questions and remaining challenges in this area. Ob-
vious issues include the best way to choose algorithmic parameters, such as
the time window size, ∆t, and the Katz downweighting parameter, α. For long
time periods, or real-time monitoring, it would also be of interest to consider
downweighting information over time, as described in [13]. A bigger challenge
is detecting, categorizing and dealing with accounts that generate automated
Tweets. Here, it may be preferable to leave the elegant but simplified network
viewpoint and dig down into the precise correlations over time of account activ-
ity.
Acknowledgements will appear in the de-anonymized version.
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