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We develop and test an intuitively simple dynamic network model to describe the type

of time-varying connectivity structure present in many technological settings. The model

assumes that nodes have an inherent hirerarchy governing the emergence of new connec-

tions. This idea draws on newly established concepts in on-line human behavior concerning

the existence of discussion catalysts, who initiate long threads, and on-line leaders, who

trigger feedback. We show that the model captures an important property found in email

and voice call data—‘dynamic communicators’ with sufficient foresight or impact to gen-

erate effective links have an influence that is grossly underestimated by static measures

based on snaphots or aggregated data.
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1 Introduction

Random graph models and centrality measures have provided extremely useful tools in

network science [25]. However, the fundamental ideas in this area are tied to the concept
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of a single, static network. Many emerging network data sets are dynamic; links between

nodes may appear and disappear in a time-dependent manner. Examples arise naturally

when we measure email activity [2, 12, 11], voice calls [6, 11, 20], online social interaction

[12, 29], geographical proximity of mobile device users [16, 29], dynamic transportation

infrastructure [4, 8, 21], voting and trading patterns [1, 23] and neural activity [3, 10],

and also when link prediction [7, 22] is required.

For this reason, new models and algorithms are needed to address dynamic structures

[10]. We emphasize that in this setting it is not just the ‘final state’ of an iterative process

that is of interest. Instead we are concerned with the real-time dynamics—what mecha-

nisms drive the continual change in topological structure, and how do we summarize key

properties of a dynamic network?

2 Background and Motivation

Figure 1 shows a hypothetical scenario of communication between a set of 21 nodes over

three days. This undirected, unweighted, network sequence has been constructed so that

node 21 does not appear to be unusually important when we consider any single day, or

the aggregate over the three days. However, closer inspection shows that the timing of

node 21’s links is special. A message from node 21 may reach nodes 19 and 20 on day

one, nodes 16 to 18 on day two and nodes 12 to 15 on day three. We could interpret node

21 as being an influential player—when other individuals receive a message that can be

traced back to node 21 they burst into action and pass the message on. Alternatively,

we could interpret node 21 as being a knowledgable player who can accurately predict,

and thereby exploit, the future network structure, perhaps from experience, expertise or
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insider information. In this work, after summarizing the recent ideas from [11] that allow

us to quantify the intuitive notion that node 21 is special, we confirm that the same phe-

nomenon is seen in real communication data. We then introduce a new, general dynamic

network model, based on simple but intuitively reasonable principles, that captures the

effect.
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Figure 1. An ordered sequence of three undirected and unweighted networks.

Following the notation in [11], for a fixed set of N nodes and time points t0 < t1 <

· · · < tM , we consider an ordered sequence of unweighted graph adjacency matrices

A[k] ∈ R
N×N , so that

(

A[k]
)

ij
= 1 if there is a link from node i to node j at time tk

and
(

A[k]
)

ij
= 0 otherwise. A dynamic walk of length w is any traversal along w edges,

where the appearance of the edges must respect the arrow of time. We note that even
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in the case of undirected networks, where each A[k] is symmetric, dynamic walks lack

symmetry in general. For example, in Figure 1 there is a dynamic walk of length two

from node 7 to node 8 (using 7 → 2 on day one and 2 → 8 on day two) but there are no

dynamic walks from node 8 to node 7. In [11] it was shown how to compute the matrix

Q ∈ R
N×N for which (Q)ij is a weighted count of the number of dynamic walks of length

w from node i to node j, where walks of length w are scaled by a factor aw. Here a is an

appopriately chosen fixed parameter that downweights the contribution of longer walks.

The corresponding row and column sums

Cbroadcast
n :=

N
∑

k=1

Qnk and Creceive
n :=

N
∑

k=1

Qkn (2.1)

are centrality measures that quantify how effectively node n can broadcast and receive

dynamic messages. In practice, because we are typically concerned with ranking the

nodes, it is preferable to compute with a normalized matrix Q/‖Q‖ in order to avoid

numerical under or overflow. These measures reduce to the classic Katz centralities [17,

25] when there is a single time point 1.

Related work in [26, 27, 28] has also devised centrality measures that respect time

dependency, based on shortest paths rather than walks. We also note that paths and re-

lated concepts under time-dependent connectivity have been studied previously. Berman

[4] considered dynamic networks where each edge has a start and finish time, and looked

at global connectivity issues. Related work in the case where each edge exists at a single

instant of time appeared in [18]. Spread of information or disease across a time-dependent

1 As discussed in the original work of Katz [17], the downweighting parameter a may also be

interpreted as the probability that a message successfully traverses an edge.
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contact network was considered in in [12], whereas [19] focuses on the issue of optimal

routes to pass the most timely information. An approach for discovering temporal com-

munities is given in [23], with extra links being added to the network sequence in order

to represent the passage of time. The ideas in [11] differ from those mentioned above

by focusing on individual nodes and all possible communicaton routes that respect the

arrow of time. In this work we use the data-driven tools from [11] to motivate and test

a new mathematical model for network evolution.

We can now quantify our intuitive arguments concerning the role of node 21 in Figure 1.

This node has the largest dynamic broadcast centrality, Cbroadcast
n , (using a = 0.5) while

ranking much lower according to static measures: there are 5 nodes with higher positions

in terms of overall degree, 7 nodes have higher positions in terms of the maximum over

k = 1, 2, 3 of Katz centrality at each time point (using a = 0.4), and node 21 lies

in 8th position in terms of Katz centrality on the aggregate network
∑3

k=1 A[k] (using

a = 0.3258). We will use the term dynamic communicator to describe a node of this

type; that is, having excellent centrality in the dynamic sense that is not apparent when

we consider only snapshot or aggregate views of the network sequence. These players can

distribute a message, or spread a disease, across the network in a manner that efficiently

exploits the transient nature of the links. For simplicity we focus here on broadcast

centrality, but we note later that a symmetry argument allows us to cover the case of

receiving.
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3 Practical Observations

We continue by showing that dynamic broadcasters can be found consistently in real

communication data sets. For Figure 2 we use two weeks of Enron email data [11]. In

this case there are N = 151 nodes and in the upper picture a) we use a time resolution

ti+1 − ti of one day—we have M + 1 = 14 time points, and (A[k])ij = 1 signifies that

at least one email (to, cc or bcc) was sent from person i to person j on day k. The

horizontal axis records the total out degree, that is, the aggregate bandwidth generated

over the whole time period, for each person. The vertical axis represents the broadcast

centrality Cbroadcast
n from (2.1). Five nodes are highlighted and labelled in subfigure a).

Nodes 1 and 2 have the highest broadcast centrality but modest total out degree—these

are examples of dynamic communicators. Follow-up analysis shows that they correspond

to an executive and the vice president, who can be speculated as having a large influence.

The nodes labelled 3, 4 and 5 have high bandwidth but relatively poor broadcast cen-

trality. Nodes 3 and 4 correspond to traders in the company and node 5 has an unknown

role. The figure highlights that an exceptionally high out degree is neither necessary nor

sufficient to guarantee influence amongst other nodes in this time-dependent setting. To

test for consistentcy at a different time resolution, in subfigure b) we split the same data

differently, with ti+1 − ti covering a two day period, giving M + 1 = 7 time points made

from pairs of consecutive days. The same two dynamic communicators are observed. An

extra node, labeled number 6, has also emerged as another example with high bandwidth

but relatively poor broadcast centrality. This node corresponds to an employee.

Figure 3 shows results of a similar experiment using 30 days of voice call data between
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Figure 2. Broadcast centrality against total out degree across a 14 day subset of Enron email

interaction [11]. Time resolution is one day for subfigure a) and two days for subfigure b). The

same two dynamic communicators, labeled 1 and 2, stand out each time.

academics [6]. Subfigure a) displays the results with a time resolution of one day and

subfigure b) uses pairs of days. We regard the nodes labelled ‘A’ as dynamic communi-

cators due to their large broadcast measure and low total degree. By constrast, nodes

labelled ‘B’ have a relatively high total degree, so their ability to broadcast is much less

surprising. As in Figure 2, changing the time resolution has not affected which nodes

emerge as dynamic communicators.



8 Alexander V. Mantzaris and Desmond J. Higham

a)

0 50 100 150 200
0

1

2

3

4

A

A

B

B

B

TOTAL DEGREE

B
R

O
A

D
C

A
S

T

b)

0 20 40 60 80 100 120 140
0

1

2

3

A

A

B

B

B

TOTAL DEGREE

B
R

O
A

D
C

A
S

T

Figure 3. Broadcast centrality against total out degree across 30 days of MIT voice call data.

Subfigure a) uses a time window of a single day and subfigure b) two consecutive days.

4 New Model

The model that we propose for explaining this phenomenon can be motivated as gener-

alizing the concept of network hierarchy from the static case [24]. In the new dynamic

setting, we assume that there is an underlying hierarchy such that some nodes have en-

hanced importance, causing their links to have a knock-on effect at future times. (As

mentioned earlier, an alternative interpretation with ‘prescience’ instead of ‘importance’

is also possible.) This hierarchy may arise through an imposed chain of command, as in

business or military organisations, through a more subtle structure of the type observed
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in social or criminal networks [5], or may be earned through completion of tasks, as

in on-line gaming [15]. The idea that hirearchy can impact communication structure is

intuitively reasonable, and is supported in the social sciences by, for example, the empir-

ical discovery of discussion catalysts in an on-line community who are “responsible for

the majority of messages that initiate long threads” [9]. Further, Huffaker [14] identifies

on-line leaders who have the ability to “trigger feedback, spark conversations within the

community, or even shape the way that other members of a group ‘talk’ about a topic.”

We will incorporate these ideas into a discrete time, discrete space Markov chain, in order

to build on the successful ‘random graph’ models [25] from the static setting, and the

more general dynamic framework of [10].

Compared with the static case, relatively little attention has been paid to developing

mathematical descriptions of temporal networks [13]. From a modelling perspective, our

work shares with [2, 30] the aims of (a) identifying a key feature in dynamic human inter-

action data sets and (b) offering a simple, intuitively reasonable, explanatory mechanism.

However, unlike those references, we are not focusing on when—i.e., the precise timing of

events for a single player. Instead we focus on where—i.e., the particular pairs of players

involved in each interaction—while accounting for the time ordering of the events.

Our model begins by assigning a fixed level of importance, ln, to each node n. We order

the nodes so that 0 < l1 ≤ l2 ≤ · · · ≤ lN . The key concept in the model is that from one

time point to the next, a node is responsive to the total importance of its current links—

messages received from more highly ranked nodes are more likely to generate follow-on

communication. More precisely, given the time tk network, A[k], we generate A[k+1] as
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follows. For each node, n, new, undirected, links appear in the row and column of n of

A[k+1] as the result of two processes; basal and responsive.

• Basal: with probability b node n generates a fixed number cb of links, with the new

neighbours chosen uniformly and independently at random. Otherwise no basal links

are generated from node n.

• Responsive: with probability

r[k]
n :=

∑N

i=1 li
(

A[k]
)

in

1 + lN
∑N

i=1

(

A[k]
)

in

node n generates a fixed number cr of links, with the new neighbours chosen uniformly

and independently at random. Otherwise no responsive links are generated from node

n.

Here 0 < b < 1 and the positive integers cb and cr are fixed parameters. The probability

r
[k]
n summarizes the current importance of connections involving node n relative to the

maximum possible value, with a shift of one added in the denominator to deal with

unconnected nodes. Repeated edges are of course removed and for simplicity we consider

links to be undirected.

In Figure 4 we show computational results for the case where ln = en, b = 0.01,

cb = 1 and cr = 4, with N = 40 nodes over 365 timepoints. The node at the top of

the hierarchy, n = 40, is marked with a circle. Results are shown for scaling parameters

a = 0.75, 0.5, 0.25 in order to check for consistency against the choice of downweighting.

In each case node 40 operates as a dynamic broadcaster: despite ranking 26th in terms

of aggregate degree, it is able to communicate effectively across the network in a well-
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defined temporal sense, since its links carry a level of importance that creates a knock-on

effect.

Because of the combinatorial, walk-counting derivation of Q in (2.1) it is straightfor-

ward to check that the broadcast and receive centralities for each node are swapped when

we reverse the direction of each link and also reverse the arrow of time. It follows that

node 21 in Figure 1 and node 50 in Figure 4 would become examples of dynamic receivers

if we supply the adjacency matrices in reverse order. For these people, without taking

full account of the temporal connectivity patterns, we could easily underestimate their

ability to accumulate information, or their chance of becoming infected. We argued that

the dynamic broadcasters may be the nodes with added importance, in the sense that

their links automatically generate a follow-on response, or added predictive power, in the

sense that they preferentially link to nodes that are about to become active. There are

similar passive and active explanations for the existence of dynamic receivers. They may

have added importance, in the sense that they are the preferred point of contact for any

node in the network that is currently bursting with information or passing on requests

for advice—for example, in massive multiplayer online role-playing games a preference

has been observed for players to send messages to higher level players [15]. More actively,

dynamic receivers may have added global, historical knowledge, in the sense that they

know which nodes are currently most informative and deliberately form links with them.

5 Conclusions

Our main aim in this work was to propose and study a new model that describes the dy-

namic appearance and disappearance of connections in an evolving network. The model
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quantifies the intuitively simple notion of an underlying hierarchy of nodal importance,

prescience or global knowledge. In practice this may arise directly through an imposed

managerial or chain-of-command structure, or more subtly through social status, or in-

telligence. Computational simulations confirmed that the new model captures an effect

that can be found in communication data—certain individuals, refered to here as dynamic

communicators, are able to punch above their weight in the sense that standard central-

ity measures based on snapshots or aggregate summaries of network activity grossly

underestimate their ability to interact with other members of the community.

Following on from this work, there is great potential for testing for the existence of

dynamic communicators in other classes of evolving network, calibrating models of this

type against real data, and investigating the role of dynamic communicators when there

is a second source of dynamic behaviour taking place over the evolving network structure,

such as a stochastic susceptible/infected/recovered disease propagation model.
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Figure 4. Broadcast centrality against total degree (horizontal axis) for network sequences

generated from the new dynamic communicator model.


