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ABSTRACT

In this paper we demonstrate that in doubly-dispersive envi-

ronments, a multicarrier (MC) system based on a fractional

Fourier transform (FrFT) can achieve a better concentration

of power near the main diagonal of the equivalent channel

matrix compared to standard orthogonal frequency division

multiplexing (OFDM). The resulting inter-symbol and inter-

carrier interference in such a chirp- based MC system can

therefore be suppressed with a reduced complexity equaliser.

Simulations show that compared to an equalised OFDM sys-

tem, the equalised FrFT-MC approach can either significantly

reduce complexity or enhance performance in a time-varying

environment.

Index Terms— Multicarrier transmission; fractional

Fourier Transformation; time varying channel; equalisation.

1. INTRODUCTION

The popularity of orthogonal frequency division multiplexing

(OFDM) systems is based on the diagonalising property to

the discrete Fourier transform (DFT) for circulant matrices.

This can be fully exploited under stationary conditions, but

in the presence of e.g. carrier frequency offset [1] or Doppler

spread [2, 3, 4, 5, 6] both the circulant property of the effective

channelmatrix and therefore the optimality of OFDM through

the introduction of inter-channel interference (ICI) are lost.

OFDM is often required for transmission over doubly-

dispersive channels carrying Doppler spread, such as e.g. for

digital video broadcast (DVB) to handheld devices (DVB-H).

To mitigate ICI, MMSE equalisation schemes have been in-

troduced [7, 8], whereby the inversion of matrices whose di-

mension matches the number of subcarriers [7] — up to 213

for DVB-H — has led to low-complexity schemes [8], where

only a band-limited matrix structure is inverted.

As an alternative to DFT-based OFDM, a multicarrier sys-

tem using the fractional Fourier transform (FrFT) has been in-

troduced in [9]. In stationary conditions DFT-OFDM since it

does not entirely decouple subcarriers. However, in doubly-

dispersive channels reduced ICI has been reported [9] and fur-

ther improved by MMSE equalisation in [10].

In this paper we present a low complexityMMSE equaliser

for FrFTOFDM systems that depends on the LDLH factor-

ization [11, 12]. The proposed system exploits the enhanced

energy concentration close to the main diagonal of the equiv-

alent channel matrix compared to what can be obtained on

DFT-based OFDM. The complexity of the FrFT-OFDM sys-

tem is approximately the same as for classic DFT-OFDM and

the equaliser complexity [9] is linear with the number of sub-

carriers which exhibits a lower complexity compared to the

block MMSE. It will be demonstrated that the performance

of the proposed low complexity system is approximately the

same as traditional OFDM systems employing a complete

MMSE equaliser.

2. FRFTMULTICARRIER SYSTEM MODEL

2.1. Fractional Fourier Transform

The FrFT is a generalised form of the Fourier transform,

which analyses signals w.r.t. chirps rather than complex ex-

ponentials. A factor a ∈ [−1, 1] determines the chirp rate and

therefore selects a representation between the time (a = 0)
and frequency domains (a = 1) [13]. Using the discretisation
proposed in [13] leads to the transformation of a signal x[n]
defined on the interval n ∈ [0, (N − 1)],

Xa[k] =

N−1∑

0

x[n]Ka[n, k] , k = 0 . . . (N − 1), , (1)

whereby Ka[n, k] are mutually orthonormal chirp signals

spanning the basis of the discrete FrFT. The FrFT coefficients
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Fig. 1. Time=frequency tilingsof the TFrFT bases functions

Ka[n, k] for (a) a = 0 (time division duplex), (b) a = 1
(frequency division duplex), and (c) 0 < a < 1 (FrFT).
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Fig. 2. FrFT-OFDM system using N subcarriers and a cyclic prefix of length L to transmit over a doubly-dispersive channel

h[m, ν], wherebyP maps symbols onto Na ≤ N active subcarriers and Fa is the FrFT matrix.

Xa[k] can therefore be obtained by a matrix operation
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(2)

with F0 = I an identity and F±1 = T±1 based on the

normalised DFT matrix T. Since an N -point FrFT matrix

Fa is unitary, the inverse discrete FrFT (IFrFT) is defined

as x = FH
a ya = F−aya, where (·)H denotes Hermitian

transpose. These discrete forms will be referred to as FrFT

and IFrFT in the following. The time-frequency tilings of

the basis functionsKa[k, n] are sketched in Fig. 1, where the
FrFT bases are shown for different values of a, creating time-

division or frequency division duplex bases in the extreme

cases of Fig. 1(a) and (b) and a linear chirp basis in the case

of Fig. 1(c).

s

2.2. FrFT-Based Multicarrier System

A conventional OFDM systems applies an inverse discrete

Fourier transform (IDFT) matrix to a data vector sn and in-

troduces a cyclic prefix (CP) prior to multiplexing the OFDM

symbol across a doubly dispersive channel h[m, ν] corrupted
by additive white Gaussian noise v[m]. After demultiplexing

the received signal r[m] =
∑∞

ν=0 h[m, ν]s[m − ν] + v[m]
and removal of the cyclic prefix, a DFT matrix reconstructs

the transmitted data vector ŝn.q In a DFrFT-based multicar-

rier system, the DFT matrix is replaced by a FrFT matrix

Fa [9, 10] as shown in Fig. 2.

The signal rn = Hnsn + vn at the output of the demulti-

plexer in Fig. 2 is characterised by th equivalent channel ma-

trixHn with elements

[Hn]i,j =

{
h[n− L+ i, i− j] i ≥ j,

h[n− L+ i, L+ i− j − 1] i < j.
(3)

In stationary conditions, Hn is circulant, and can be decou-

pled by Fa with a = ±1, whereby the case a = 1 represents

the conventional OFDM system.

We additionally introduce a binary matrix P ∈ ZN×Na ,

which assigns a data vector dn ∈ CNa to N subcarriers, of

which only Na are active according to

P =
[
0Na×(N−Na)/2 INa

0Na×(N−Na)/2

]T
, (4)

where 0L×M is an L×M matrix with zero entries, and IL an

L × L identity matrix. The equaliser matrix Wn ∈ CNa×Na

in the receiver operates on the input

r̃n = PHFaHnF−aPdn +PHFavn

= Cndn + ṽn , (5)

with a system matrix Cn ∈ CNa×Na . The purpose of the

binary matrix P is not only to reduce out-of-band emissions,

but also to eliminate components in the upper right and lower

left corners ofCn.

3. LOW COST EQUALISATION

3.1. MMSE Equaliser

Assuming perfect knowledge of the channel matrix Hn, the

approach in [8] can be extended to the system in Fig. 2. In the

ideal case, a linear blockMMSE equaliser is defined based on

the system matrix Cn. Below, we restrict the calculation of

Wn to the first Q sub- and super-diagonals of Cn by means

of a binary masking matrixM with elements

[M]ij =

{
1 0 ≤ |i− j| ≤ Q,

0 Q < |i− j| < Na.
(6)

The shape of this matrix is imprinted on the masked matrix

Bn = M ⊙Cn, where ⊙ represents element-wise multipli-

cation. Based on the masked matrix, analogously to [8] the

MMSE equaliser can be defined as

Wn,MMSE = BH
n (BnB

H
n + γ−1I)−1 , (7)

where γ is the signal to noise ratio (SNR) at the input to the

equaliser, assuming corruption by white Gaussian noise. The

matrix inversion in (7) requires O(N3) flops which is not

practical for high values of Na, such as found in DVB-T.

The masking is justified since the equivalent system ma-

trix in the fractional domain is approximately banded [9].

This enables a low-cost approach to equalisation, which is

introduced next.



3.2. Equalisation Using Band LDLH Factorization

The band structure of Bn with Q off-diagonal terms below

and above the main diagonal leads to a band structure for

(BnB
H
n ), where only the first 2Q off-diagonal terms above

and below the diagonal contain finite elements. This can sim-

plify the calculation of the MMSE equaliser in (7). However,

since (7) is time-dependent, we will below calculate d̂n =
Wn,MMSEr̃n without explicitly determiningWn,MMSE.

The LDLH factorisation of the Hermitian band matrix

BnB
H
n +γ−1I = LDLH is numerically straightforward [11],

and leads to

d̂n = BH
n (LDLH)−1r̃n = BH

nxn . (8)

Instead of calculating the inverse in (8), the system

LD

x1,n

︷ ︸︸ ︷

LHxn
︸ ︷︷ ︸

x2,n

= r̃n (9)

is solved by forward substitution to obtain x2,n via the lower

left triangular matrix L and a rescaling by the diagonal matrix

D−1 to calculate x1,n. Finally backsubstitution with the up-

per right triangular LH yields xn, which can be inserted into

(8) in order to determine d̂n.

The overall complexity for obtaining d̂n is (8Q2+22Q+
4)Na multiply-accumulates (MACs) [8], such that the selec-

tion of the parameterQ involves a trade-off between accuracy

and cost.

4. SIMULATIONS AND RESULTS

4.1. Simulation Setup

To assess the performance of the proposed system, we assume

an OFDM transmission with N = 128 subcarriers of which

Na = 96 are active, a cyclic prefix of length L = 8, and
QPSK modulation. Simulations are performed over an en-

semble of 104 Rayleigh fading channels defined by an expo-

nential power delay profile with an RMS delay spread of three

sampling periods. This channel model uses the same statistics

as in [14], including a maximum Doppler spread ΩD equal to

15% of the carrier spacing.

4.2. Power Concentration

To assess the impact of the masking level Q, we compare the

ratio between the power of components in the original system

matrix Cn and in the reduced matrix Bn after masking by

M. Averaged over the ensemble and using the trace operator

tr{·}, this power ratio is defined as

ρ[Q] = E

{

tr
{
BnB

H
n

}

tr{CnCH
n}

}

(10)
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Fig. 3. Percentage of power of Cn contained in Bn, mea-

sured by ρ[Q] in dependence of the number of off-diagonal el-

ements Q considered by M, comparing FFT-OFDM (a = 1)
and FrFT-OFDM (a = 0.2).

with 0 ≤ ρ[Q] ≤ 1.
Results in Fig. 3 clearly indicate that FFT-OFDM experi-

ences a spread of energy away from the main diagonal due to

Doppler fading which is not limited to nearby off-diagonals,

hence requiring a high value for Q to capture most of the

power contained in Cn. FrFT-OFDM does not manage to

diagonalise Cn, but in contrast to FFT-OFDM, the leaked

power is contained in neighbouring off-diagonal element, and

a much lower value of Q suffices to capture most of the com-

ponents ofCn in Bn.

4.3. BER Performance

Motivated by the above power concentration, we perform

MMSE equalisation for simulations based on channels with

a maximum Doppler frequency equivalent to 15% of the sub-

carrier spacing. The low complexity equaliser introduced in

Sec. 3 is operated withQ = {5, 96}, whereby the second set-
ting is equivalent to a standard block MMSE equaliser. The

system uses chirp rates a = {0.2, 1}, which for the second

setting is identical to standard FFT-OFDM.

Performance results in terms of bit error ratio are shown in

Fig. 4. The FFT-OFDM curves match those reported in [8].

The proposed FrFT system with Q = 5 shows a degrada-

tion over the full scheme at high SNR, but only requires 3.4%

of the computational cost in terms of MACs and still outper-

forms FFT-OFDM even with a full block MMSE equaliser

with a computation cost of O(N3
a ) MACs.

5. CONCLUSIONS

We have proposed a low cost equaliser for an FrFT-OFDM

system, which generalises an FFT-OFDM system when as-

suming a chirp rate a = 1. Equalisation is based on a lim-

itation of the considered system matrix to the first Q off-
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Fig. 4. Bit error ratio for MMSE equalisation using block

(Q = Na = 96) and low-cost (Q = 5) approaches for FrFT-
(a=0.2) and FFT-OFDM (a=1).

diagonal terms and uses a numerically efficient LDLH fac-

torisation. The fact that in a doubly-dispersive scenario the

FrFT-based multicarrier system concentrates the power in its

system matrix closer to the main diagonal than a standard

FFT-OFDM scheme leads to a significantly improved perfor-

mance w.r.t. standard OFDM, and a considerable cost reduc-

tion w.r.t. previous FrFT equalisation approaches. This per-

formance mildly depends on a, whose optimisation based on

channel parameters is the subject of on-going research.
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