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Nomenclature 

a = semi-major axis, km 

Cn,m = harmonic coefficients of Earth potential 

e = eccentricity 

Fn = low-thrust normal perturbation scalar 

Fr = low-thrust radial perturbation scalar 

Ft =  low-thrust transverse perturbation scalar 

i = inclination, deg 

J2 = perturbation due to Earth’s oblateness 

N = normal perturbation acceleration, mm/s
2 

Pn,m = associated Legendre polynomials 

p = semi-parameter, km 

R = radial perturbation acceleration, mm/s
2 

Re = mean radius of Earth, km 

r = orbit radius, km 

Sn,m = harmonic coefficients of Earth potential 

T = transverse perturbation acceleration, mm/s
2 

U = potential 

Uo = point-mass gravitational potential 

Up = perturbing component of potential body 

β = declination of spacecraft, deg 

θ = true anomaly, deg 
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λ = geographical longitude, deg 

μ = gravitational parameter of Earth, km
3
/s

2 

Ω = ascending node angle, deg 

ω = argument of perigee, deg 

I. Introduction 

 

UE to restrictions within the current architecture of the global observing system (GOS), space-based remote 

sensing of Earth suffers from an acute data-deficit over the critical polar-regions. Currently, observation of 

high-latitude regions is conducted using composite images from spacecraft in geostationary (GEO) and low-Earth 

orbits (LEOs) [1]. However, the oblique viewing geometry from GEO-based systems to latitudes above around 55 

deg [2] and the insufficient temporal resolution of spacecraft in LEO means there is currently no source of 

continuous imagery for polar-regions obtained with a data refresh rate of less than 15 minutes, as is typically 

available elsewhere for meteorological observations. 

  The use of high inclination orbits for improved polar monitoring has recently been endorsed by the World 

Meteorological Organization [3], stating that a Highly Elliptical Orbit (HEO) constellation is required, 

complementing the fleet of GEO satellites achieving continuous global coverage. One example of a HEO is the 

Molniya orbit, which has a period of 12 hrs and “critical-inclination” of 63.43 deg or 116.6 deg at either of these 

inclinations there is no change in the argument of perigee of the orbit, usually caused by the Earth’s equatorial 

bulge. Although this offers an alternative for polar remote sensing, the inclination means a single platform on a 

Molniya orbit cannot provide hemispheric observations to the latitudes required to overcome the identified data 

deficit (55 deg latitude). As a result, observations would continue to be dependent upon composite images. To 

provide continuous observation to the latitudes required, with composite images, three spacecraft on Molniya orbits 

in three separate orbit planes are required.  

 Newly proposed HEOs, termed Taranis orbits, use continuous acceleration to modify the magnitude of the 

perturbing acceleration from a Keplerian orbit allowing free selection of the critical inclination to any value required 

by the mission. Taranis orbits have been introduced by Anderson and Macdonald [4, 5], where the method for 

determining the acceleration required to achieve orbits with varying inclinations is detailed, for both solar electric 
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propulsion (SEP) and hybrid solar-sail/SEP systems respectively. Previous work also pays particular attention to a 

12 h Taranis orbit with apogee altitude similar to that of a Molniya orbit and an inclination of 90 deg. The authors 

have also considered the design of a constellation of spacecraft on Taranis orbits to give continuous observation 

above 55 deg latitude. Only two spacecraft, in a single orbit plane, for a 12 h orbit are required to provide 

continuous observation using composite images. However, a third spacecraft in the same orbit plane enables 

continuous visibility without the use of composite images. Critically, the use of a single orbit plane significantly 

reduces the constellation deployment costs. 

 This paper builds upon the work introduced in [4-6] and develops sun-synchronous Taranis orbits, using 

methods detailed in recent research for the extension of sun-synchronous orbits [7]. Within this work, the thrust 

magnitude required is not defined as a function of the local gravity field but instead by the magnitude of the 

perturbations within that field, augmenting the Earth oblateness perturbation to modify the sun-synchronous orbit 

and allow free selection of the orbit inclination and altitude. Previously, Taranis orbits have been developed using 

continuous radial and transverse accelerations, thus sun-synchronous Taranis orbits are achieved by the addition of a 

further element of acceleration, directed out of the orbit plane. This ensures the rate of change of the ascending node 

of the Taranis orbit matches the mean rotation of the sun within an Earth-centered inertial (ECI) frame. It is likely 

that sun-synchronous HEOs will offer benefits in terms of simplified instrument design through simplification of the 

thermal environment. 

II. Spacecraft Motion about an Oblate Body with Low-Thrust Propulsion 

A. General Perturbations Solution 

A sun-synchronous orbit requires that the rate of change of the ascending node matches the motion of the mean sun 

(2π radians in 365.25 days). The ascending node can be described within an ECI reference frame through the 

Gaussian form of the variational equations of the classical orbital elements [8] 

 
3

sin
sin

d r
N

d p i
 

 


    (1) 

Taranis orbits also require the rate of change of argument of perigee to remain unchanged in order that the position 

of apogee is not affected by the perturbations caused by the oblate nature of the Earth. The rate of change of 

argument of perigee is given as [8] 
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 (2) 

The disturbing force components in the radial, transverse and normal (RTN) directions are given by 
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These expressions contain contributions from the Earth oblateness effect, J2, and acceleration terms, which are 

added to the perturbations using locally optimal control laws, which maximize the instantaneous rate of change of 

the orbital element and provide the thrust orientation in analytical form [9]. The control laws also give the distinct 

position on the orbit where the sign of the thrust is required to switch direction. 

 

1. Ascending Node Angle  

A continuous acceleration is firstly added to the out of plane perturbation to ensure the change in ascending node 

angle is equal to approximately 1 deg per day for any orbit under consideration and maintain the sun-synchronous 

condition. The expression for the rate of change of ascending node with the application of low-thrust is determined 

by inserting Eq. (5) into Eq. (1) 

2 42 2 2
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3 (1 cos( )) in(2 ) sin( )(1 ) sin( )
sgn[sin( )]

sin( ) (1 cos( )) 2 (1

s

)

e

n

J R e ia ed
F

d i e a e

    
 

  

   
   

  
 (6) 

It is noted that the normal low-thrust component switches sign as a function of argument of latitude; consequently, 

the value assigned to the argument of perigee becomes important. Thus, considering argument of perigee equal to 

both 0 deg and 270 deg and integrating Eq. (6) over one orbital revolution results in two expressions for the change 

in ascending node angle 
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Switching the rate of change of ascending node per rotation to per second gives 
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 (10) 

If no continuous acceleration is applied, Eqs (9) and (10) simplify to the standard expression for the sun-

synchronous orbit 
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2. Argument of Perigee 

Sun-synchronous Taranis orbits are also required to give zero change in the argument of perigee over one orbital 

revolution. Thus, continuous radial and transverse accelerations are added to maintain this condition and compensate 

for the applied out-of-plane acceleration. The rate of change of argument of perigee is found by substituting Eqs. (3) 

- (5) into Eq. (2) to give 
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The change in argument of perigee is found by integrating Eq. (11) over one orbital revolution. The total change in 

argument of perigee is made up of four terms, consisting of the change in argument of perigee due to J2 effects and 

due to the effects of each of the R, T, and N accelerations.  
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The acceleration due to J2 is given by 
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To determine the natural critical inclination, Eq. (12) containing only the effects of J2, from Eq (13), is set to zero 

resulting in inclinations of 63.43 deg and 116.6 deg. Thus, all Earth orbits inclined at these values show no rotation 

of the apsidal line, irrespective of the semi-major axis or eccentricity. However, these fixed critical inclinations 

place restrictions on design and thus limit the applications of Molniya-like orbits for high-latitude observation. It is 

evident from Eq. (12) that altering the inclination from these values will result in a drift in the argument of perigee 

due to the effect of J2 perturbations. Thus, for each value of inclination there exists a constant acceleration 

magnitude which will negate this drift, and allow free selection of inclination. Acceleration components in the 

radial, transverse and normal directions are given by 
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Once again, the normal low-thrust term switches sign as a function of the argument of latitude. Thus, two solutions 

exist for argument of perigee equal to 0 deg and 270 deg. 
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 (17) 

Although two solutions exist depending on the value of argument of perigee, an argument of perigee of 270 deg 

is considered in the remainder of the paper. 

Equation (10) is firstly considered by substituting values of the orbital elements and solving for the continuous 

acceleration, Fn. This is substituted, along with the orbital element values into Eq. (12), which is solved for the 

required radial and transverse accelerations, to compensate for the applied out of plane acceleration and maintain the 

zero change in argument of perigee condition. The total acceleration magnitude to achieve sun-synchronous Taranis 

orbits of varying orbital period and inclination are given in Fig. 1, where the perigee altitude is 813 km.  
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Fig. 1  Total acceleration magnitude to achieve sun-synchronous Taranis orbits of varying period and 

inclination. 

Fig. 1 shows that a natural sun-synchronous orbit exists without the use of any low-thrust propulsion. This 

occurs for a 3 h orbit at the conventional critical inclination of 116.6 deg.  As the perigee altitude remains constant 

for all orbits in Fig. 1, only one natural sun-synchronous exists i.e. the 3 h orbit. Thus, the other results shown in 

Fig. 1 are an extension of this solution, and are only enabled through the use of continuous acceleration. For 

improved high-latitude observation the most beneficial inclination is 90 deg in the case of a 12 h orbit, the orbit 

considered in previous publications [4, 5], the total constant acceleration magnitude required is 0.478 mm/s
2
. In this 

case, the majority of the acceleration is in the normal direction (0.470 mm/s
2
). Thus, for a 1-ton spacecraft a 

maximum thrust of 478 mN is required, which will decrease as the propellant is consumed a variable thrust SEP 

system is therefore required Although the maximum thrust is higher than the thrust required to achieve a 90 deg 

inclination Taranis orbit without the sun-synchronous condition (81 mN) this level of thrust is achievable using 

current or near-term technology. For example, the High Power Electric Propulsion thruster which has undergone 

ground testing is capable of providing a maximum of 670 mN, [10] and test data from the Nuclear Electric Xenon 

Ion System  has also shown a maximum thrust level of 476 mN [11]. 
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Fig. 1 also shows that as the orbital period increases, the acceleration magnitude decreases. To reach an 

inclination of 90 deg a 24 h orbit requires a constant acceleration of 0.275 mm/s
2
, while a 6 h orbit requires a 

constant acceleration magnitude of 0.865 mm/s
2
. Thus, lower orbit periods are expected to require development in 

SEP technology before they become feasible. 

B. Change in Orbital Elements 

Analytical solutions are developed for the remaining orbital elements, to ensure the desired zero secular rate of 

change of orbital elements is maintained in the presence of continuous acceleration. 
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Substituting expressions for the perturbing accelerations gives 
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Integrating Eq. (19) over one revolution to give the change in semi-major axis as 
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Inserting the perturbations into Eq. (21) gives 



 

American Institute of Aeronautics and Astronautics 
 

 

10 

 
 

      

 

     

 

42 2 2

22

2 4
4 2

4 22

2

4
4 2

3 1 cos 1 3 sin sin1
1 sin

1 cos 2 1

3 1 cos sin sin21
cos 1

1 cos 1 cos 2 1

e

r

e

t

J R e ide
a e F

d e a e

J R e ie
F

e e a e

   


  

   


 

         
     

  

                    
 

 (22) 

Integrating over one revolution, the change in eccentricity is 
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3. Inclination 
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Substituting the normal perturbation, Eq. (24) becomes 

   

 

     

 

2
42 2 2

2

3 4
4 2

1 cos 3 1 cos sin 2 sin

1 cos 2 1

e

n

a e J R e idi
F

d e a e

     

  

      
   
 

 (25) 

Once more, the locally optimal control law states that the normal thrust switches sign depending on argument of 

latitude; consequently Eq. (25) is integrated over one orbit using both argument of perigee equal to 0 deg and 270 

deg gives the change in inclination respectively 

 
 2

2

0

0deg

4 sinna F
i










 
   

  

  (26) 

   
2 2 2 2 2

0 2 2 2 2

270deg

1 1 1 1
cos 4 1 2 1 12 Arctanh 3 ln 3 ln

1 1 1 1
n

e e e
i a F e e e e e e

e e e e










           
                 

                     

 (27) 

Inserting values of orbital elements gives the change in inclination for both cases as 

 
2

0
0i


    (28) 
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Thus, these analytical solutions show no adverse affect on any of the orbital elements through the application of 

continuous low-thrust. 

C. Special Perturbations Technique 

To verify the solutions generated using the general perturbations method, a special perturbations solution is 

generated. This numerical model propagates the position of the spacecraft,with initial conditions given in Table 1, 

using a set of Modified Equinoctial Elements [12], using an explicit variable step size Runge Kutta (4,5) formula, 

the Dormand-Prince pair [13]. Numerical simulations include only perturbations due to Earth oblateness to the order 

of J2 and relative and absolute error tolerances are set to 10
-8

. The acceleration control profiles, given from the 

locally optimal control laws, to maintain the 12 h, 90 deg incliantion Taranis orbit are given in Fig. 2 - Fig. 4.  

 

Fig. 2  Radial control profile over one orbital revolution. 
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Fig. 3  Transverse control profile over one orbital revolution. 

 
 

Fig. 4  Normal control profile over one orbital revolution. 

 

It can be seen from Fig. 2 - Fig. 4 the relative simplictity of the control profiles implemented to enable the 12 h, 

90 deg Taranis orbit. Although the controls used are not globally optimal, previous studies on the 12 h Taranis orbit 

without the sun-synchronous condition have performed optimization using PSOPT, which was shown to produce a 

propellant saving of <4%, this mass saving was deemed to be negligible due to the significant increase in 

complexity of the control profiles in this case [4]. Optimisation of the controls has therefore not been performed for 

the sun-synchronous Taranis orbits presented in this paper. Although the results shown in this paper are for 

continuous, constant acceleration as the propellant is consumed and the spacecraft mass decreases thrust arcs could 
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be introduced into the orbit, thus increasing the tolerances to thrust failure significant investigation of this is 

however, out with the sope of this work. 

The numerical model verifies that the change in argument of perigee is negligible over one orbit revolution, and 

the change in ascending node angle is approximately equal to 1 deg per day, this is shown in Fig. 5 and Fig. 6 

respectively. The numerical model also confirms that the change in semi-major axis, eccentricity and inclination are 

negligible over one orbit revolution.  The change in semi-major axis, eccentricity and inclination over five orbital 

revolutions are shown in Fig. 7. 

Table 1 Orbital parameters. 

  

Orbital Element Value 

Perigee Altitude 813 (km) 

Apogee Altitude 39540 (km) 

Ascending Node 330 (deg) 

Argument of perigee 270 (deg)  

 

 
Fig. 5  Varaition of argument of perigee over five orbital revolutions. 
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Fig. 6  Variation of longitude of ascending node over five orbital revolutions. 

 

 
(a)                                                                                         (b) 

 

 
(c) 

Fig. 7  Oscillation of orbital elements over five orbital revolutions: a) semimajor axis, b) eccentricity, and c) 

argument of perigee. 
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III. Conclusion 

The use of continuous low-thrust propulsion has been shown to enable highly elliptical sun-synchronous orbits 

around the Earth, termed sun-synchronous Taranis orbits. Continuous, constant acceleration is used to alter both the 

natural critical inclination of highly elliptical orbits to any inclination, and to maintain the sun-synchronous orbit 

condition. As such, a highly elliptical sun-synchronous orbit inclined at 90 deg can be enabled, allowing improved 

high-latitude imaging and simplified instrument design through simplification of the thermal environment. To 

enable a 12 h, 90 deg inclination orbit a total acceleration of around 0.5 mm/s
2
 is required, although this is 

significantly higher than the acceleration required to enable a highly elliptical orbit with an inclination of 90 deg 

without the sun-synchronous condition (0.081 mm/s
2
), it is likely to be achievable using current or near term 

technology, for example the High Power Electric Propulsion Thruster. 
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