Picture child's feet next to pens, pencils and paper

Open Access research that is helping to improve educational outcomes for children

Strathprints makes available scholarly Open Access content by researchers in the School of Education, including those researching educational and social practices in curricular subjects. Research in this area seeks to understand the complex influences that increase curricula capacity and engagement by studying how curriculum practices relate to cultural, intellectual and social practices in and out of schools and nurseries.

Research at the School of Education also spans a number of other areas, including inclusive pedagogy, philosophy of education, health and wellbeing within health-related aspects of education (e.g. physical education and sport pedagogy, autism and technology, counselling education, and pedagogies for mental and emotional health), languages education, and other areas.

Explore Open Access education research. Or explore all of Strathclyde's Open Access research...

A flexible mathematical model platform for studying branching networks : experimentally validated using the model actinomycete, Streptomyces coelicolor

Nieminen, Leena Kaija Linnea and Webb, Steven and Smith, Maggie and Hoskisson, Paul (2013) A flexible mathematical model platform for studying branching networks : experimentally validated using the model actinomycete, Streptomyces coelicolor. PLoS One, 8 (2). ISSN 1932-6203

[img]
Preview
Other (Nieminen-etal-PLOSOne-2013-A-flexible-mathematical-model-platform-for-studying-branching-networks)
Nieminen_etal_PLOSOne_2013_A_flexible_mathematical_model_platform_for_studying_branching_networks.PDF
Final Published Version
License: Creative Commons Attribution 2.5 logo

Download (2MB) | Preview

Abstract

Branching networks are ubiquitous in nature and their growth often responds to environmental cues dynamically. Using the antibiotic-producing soil bacterium Streptomyces as a model we have developed a flexible mathematical model platform for the study of branched biological networks. Streptomyces form large aggregates in liquid culture that can impair industrial antibiotic fermentations. Understanding the features of these could aid improvement of such processes. The model requires relatively few experimental values for parameterisation, yet delivers realistic simulations of Streptomyces pellet and is able to predict features, such as the density of hyphae, the number of growing tips and the location of antibiotic production within a pellet in response to pellet size and external nutrient supply. The model is scalable and will find utility in a range of branched biological networks such as angiogenesis, plant root growth and fungal hyphal networks.