Picture of industrial chimneys polluting horizon

Open Access research shaping international environmental governance...

Strathprints makes available scholarly Open Access content exploring environmental law and governance, in particular the work of the Strathclyde Centre for Environmental Law & Governance (SCELG) based within the School of Law.

SCELG aims to improve understanding of the trends, challenges and potential solutions across different interconnected areas of environmental law, including capacity-building for sustainable management of biodiversity, oceans, lands and freshwater, as well as for the fight against climate change. The intersection of international, regional, national and local levels of environmental governance, including the customary laws of indigenous peoples and local communities, and legal developments by private actors, is also a signifcant research specialism.

Explore Open Access research by SCELG or the School of Law. Or explore all of Strathclyde's Open Access research...

Gravitational stability of a cylindrical plasma with an azimuthal and an axial magnetic field

McLeman, J. A. and Wang, C. H. -T. and Bingham, R. (2012) Gravitational stability of a cylindrical plasma with an azimuthal and an axial magnetic field. Astrophysical Journal, 756 (2). ISSN 0004-637X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We consider the gravitational stability of a current-carrying filamentary cloud in the presence of both axial and azimuthal magnetic fields using a simple analytic model. The azimuthal magnetic field is shown to give rise to a new contribution, dictated by Ampere's law, in the corresponding virial equation for magnetohydrodynamic equilibrium. From this we obtain a computationally inexpensive guidance on the gravitational stability of current-carrying filamentary clouds. The approach not only provides a fresh insight into the essential physical mechanisms involved but also demonstrates clearly that, for sufficiently large and yet astronomically realistic currents, the azimuthal magnetic field can cause filamentary clouds to undergo instability.