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Summary

A comprehensive description is obtained of steady thermoviscous (i.e. with
temperature-dependent viscosity) coating and rimming flow on a uniformly rotating
horizontal cylinder that is uniformly hotter or colder than the surrounding
atmosphere. It is found that, as in the corresponding isothermal problem, there
is a critical solution with a corresponding critical load (which depends, in general, on
both the Biot number B and the thermoviscosity number V ) above which no “full-
film” solutions corresponding to a continuous film of fluid covering the entire outside
or inside of the cylinder exist. The effect of thermoviscosity on both the critical
solution and the full-film solution with a prescribed load is described. In particular,
there are no full-film solutions with a prescribed load M for any value of B when
M ≥ f̂−1/2Mc0 for positive V and when M > Mc0 for negative V , where f̂ is a
monotonically decreasing function of V and Mc0 ≃ 4.44272 is the critical load in the
constant-viscosity case. It is also found that, for the exponential viscosity model,
when the prescribed load satisfies M < 1.50315 there is a narrow region of the B–V
parameter plane in which backflow occurs.

1. Introduction

The influence of thermoviscosity (i.e. temperature-dependent viscosity) effects on the two-
dimensional flow of a thin film of viscous fluid on either the outside (often called “coating
flow”) or the inside (often called “rimming flow”) of a uniformly rotating horizontal cylinder
is studied. The corresponding isothermal problem has been studied extensively, largely
building on the pioneering work of Pukhnachev† (1) and Moffatt (2). Pukhnachev (1)
discussed the existence and uniqueness of solutions for coating flow of the steady two-
dimensional Navier–Stokes equations and then used lubrication theory to derive an evolution
equation that includes the effects of gravity, viscosity and surface tension, while Moffatt
(2) considered coating flow both theoretically using a model based on lubrication theory
and experimentally and, in particular, found that steady continuous, finite and non-zero
solutions to his model (hereafter referred to as “full-film” solutions) are possible only below
a critical load.

There have been many subsequent studies of isothermal coating flow, including those
by Johnson (3), Hansen and Kelmanson (4), Thoroddsen and Mahadevan (5), Wilson
and Williams (6), O’Brien and Gath (7), Hosoi and Mahadevan (8), Duffy and Wilson
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(9), Peterson, Jimack and Kelmanson (10), Tirumkudulu and Acrivos (11), O’Brien (12),
Wilson, Hunt and Duffy (13), Ashmore, Hosoi and Stone (14), Benilov and co-workers
(15, 16, 17, 18), Hinch and Kelmanson (19), Acrivos and Jin (20, 21), Evans, Schwartz
and Roy (22, 23), Noakes, King and Riley (24, 25), Villegas-Dı́az, Power and Riley (26),
Chen, Tsai, Liu and Wu (27), Karabut (28), Hunt (29), Kelmanson (30), Tougher, Wilson
and Duffy (31), and Pougatch and Frigaard (32).

Owing to the wide range of practical situations in which thermoviscosity effects are
significant there have been a number of studies of the effects of thermoviscosity on the
non-isothermal flow of thin films of fluid on a variety of substrates. Thermoviscous flow
of thin films and rivulets of fluid has been studied by, amongst others, Goussis and Kelly
(33, 34), Hwang and Weng (35), Reisfeld and Bankoff (36), Wu and Hwang (37), Selak
and Lebon (38), Kabova and Kuznetsov (39), Duffy and Wilson (40, 41, 42), and Sansom,
King and Riley (43). However, relatively little work has been done on thermoviscous
coating and rimming flow on a heated or cooled horizontal cylinder. Duffy and Wilson
(44) used lubrication theory to study steady flow on both a stationary and a uniformly
rotating cylinder in the rather special case in which the free surface is at the same uniform
temperature as the surrounding atmosphere and found that the film thickness (and hence
the load, but not the temperature or the velocity) can be obtained by a simple re-scaling
of the isothermal solution, and recently Leslie, Wilson and Duffy (45) analysed steady
thermoviscous flow with prescribed flux on a stationary cylinder. In the present work we
obtain a comprehensive description of steady thermoviscous coating and rimming flow on
a uniformly rotating horizontal cylinder. In particular, the effect of thermoviscosity on
both the critical solution and the full-film solution with a prescribed load is described. In
the Appendix a distinguished limit corresponding to strong thermoviscosity and weak heat
transfer at the free surface in which thermoviscosity effects still enter the problem at leading
order is discussed.

2. Problem Formulation

Consider the steady two-dimensional thermoviscous flow of a thin film of a Newtonian fluid
with uniform density ρ and temperature-dependent viscosity µ = µ(T ), where T denotes the
(in general) non-uniform temperature of the fluid, on either the outside (“coating flow”) or
the inside (“rimming flow”) of a circular cylinder of radius a rotating in a counter-clockwise
direction about its horizontal axis at uniform angular speed Ω (so that the circumferential
speed is aΩ), the cylinder being at the uniform temperature T0, which may be either hotter
or colder than the uniform temperature of the surrounding atmosphere, denoted by T∞

(6= T0). Where possible we will consider a general viscosity model µ = µ(T ), where µ(T )
is any monotonically decreasing function of T satisfying µ = µ0 and dµ/dT = −λ (< 0)
when T = T0, where λ (> 0) is a prescribed positive constant, and so the appropriate
non-dimensional measure of thermoviscosity is the thermoviscosity number, V , defined by

V =
λ(T0 − T∞)

µ0

. (2.1)

Since V has the same sign as T0 − T∞, situations in which the cylinder is hotter (colder)
than the atmosphere correspond to positive (negative) values of V . When it is necessary to
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Fig. 1 Geometry of the problem (drawn for coating flow): steady two-dimensional thermoviscous
flow of a thin film of Newtonian fluid on a uniformly rotating horizontal cylinder that is uniformly
hotter or colder than the surrounding atmosphere.

specify a particular viscosity model we will use the exponential viscosity model

µ(T ) = µ0 exp

(

−λ(T − T0)

µ0

)

(2.2)

as used by many previous authors (for example, Goussis and Kelly (33, 34), Hwang and
Weng (35), Selak and Lebon (38), Wilson and Duffy (41), and Leslie, Wilson and Duffy
(45)). As, for example, Leslie, Wilson and Duffy (45) describe, physically realistic values
of V vary over several orders of magnitude from arbitrarily small values (when the viscosity
is effectively independent of temperature and/or when the magnitude of the heating or
cooling is small) to reasonably large values (when the viscosity is strongly dependent on
temperature and/or when the magnitude of the heating or cooling is large).

Referred to polar coordinates r = a ± Y (with origin at the cylinder’s axis) and θ
(measured counter-clockwise from the horizontal), as shown in Figure 1 (drawn for coating
flow), we take the free surface of the fluid to be at r = a+h for coating flow and r = a−h for
rimming flow, the film thickness being denoted by h = h(θ). The fluid velocity u = ueθ+ver

(where eθ and er denote unit vectors in the azimuthal and radial directions, respectively),
the pressure p, and the temperature T are governed by the usual mass-conservation, Navier–
Stokes and energy equations. On the cylinder r = a the velocity u satisfies no-slip and
no-penetration conditions, and the temperature is T = T0 (a prescribed constant). On the
free surface r = a ± h the usual normal and tangential stress balances and the kinematic
condition apply, as does Newton’s law of cooling −kth∇T · n = αth(T − T∞), where kth

denotes the thermal conductivity of the fluid (assumed constant), αth (≥ 0) denotes an
(empirical) surface heat-transfer coefficient, and n denotes the unit outward normal to
the free surface. Surface tension, viscous dissipation, inertia and thermal advection are all
neglected (which is valid provided that the appropriate capillary number is sufficiently large
and that the appropriate Brinkman, Reynolds and Péclet numbers are sufficiently small).
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We consider only thin films with small aspect ratio ǫ defined by

ǫ =

(

µ0Ω

ρga

)1/2

≪ 1, (2.3)

where g denotes the magnitude of gravitational acceleration, and non-dimensionalise and
scale the system appropriately by writing

r = a(1 ± ǫY ∗), h = ǫah∗, u = aΩu∗, v = ±ǫaΩv∗,

ψ = ±ǫa2Ωψ∗, p = pa ± ǫaρgp∗, T = T∞ + (T0 − T∞)T ∗,

µ = µ0µ
∗, Q = ǫa2ΩQ∗, M = ǫa2ρM∗,

(2.4)

in which the + in the ± corresponds to coating flow while the − corresponds to rimming flow,
ψ is the streamfunction satisfying u = ∂ψ/∂Y and v = −∂ψ/∂θ with ψ = 0 on Y = 0, pa is
the constant pressure in the surrounding atmosphere, Q is the constant azimuthal volume
flux of fluid per unit axial length crossing a station θ = constant, and M (> 0) is the constant
fluid load on/in the cylinder (that is, the mass of fluid per unit length on/in the cylinder).
Note that since the non-dimensionalisation of temperature given in (2.4) incorporates the
factor T0 −T∞, which can be either positive or negative, care is required when interpreting
results for the non-dimensional temperature T ∗ in terms of the dimensional temperature T .
For clarity the star superscripts on non-dimensional variables will be omitted henceforth.
In terms of non-dimensional variables the fluid occupies 0 ≤ Y ≤ h for −π < θ ≤ π, the
general viscosity model µ = µ(T ) satisfies µ = 1 and dµ/dT = −V when T = 1, and the
exponential viscosity model (2.2) is given by

µ = exp(−V (T − 1)). (2.5)

For both coating and rimming flow at leading order in ǫ the governing equations become

∂u

∂θ
+

∂v

∂Y
= 0,

∂

∂Y

(

µ
∂u

∂Y

)

= cos θ,
∂p

∂Y
= − sin θ,

∂2T

∂Y 2
= 0, (2.6)

together with the boundary conditions

u = 1, v = 0 and T = 1 on Y = 0 (2.7)

and
∂u

∂Y
= 0, p = 0 and

∂T

∂Y
+ BT = 0 on Y = h, (2.8)

where the Biot number, B (≥ 0), defined by

B =
ǫaαth

kth

, (2.9)

is the appropriate non-dimensional measure of heat transfer to or from the atmosphere at
the free surface. The special case B = 0 corresponds to a perfectly insulated free surface
with no heat transfer to or from the atmosphere (i.e. ∂T/∂Y = 0 on Y = h), while at
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leading order in the limit B → ∞ the free surface is at the same uniform temperature as
the atmosphere (i.e. T = 0 on Y = h).

Introducing the rescaled radial coordinate y = Y/h (so that the fluid lies within the fixed
range 0 ≤ y ≤ 1) and solving (2.6) subject to (2.7) and (2.8) for the azimuthal velocity
u = u(y, θ), the streamfunction ψ = ψ(y, θ)†, the pressure p = p(y, θ) and the temperature
T = T (y, θ) yields

u = 1 − h2 cos θ

∫ y

0

1 − ỹ

µ(T (ỹ, θ))
dỹ, (2.10)

ψ = hy − h3 cos θ

∫ y

0

∫ ȳ

0

1 − ỹ

µ(T (ỹ, θ))
dỹ dȳ = hy − h3 cos θ

∫ y

0

(1 − ỹ)(y − ỹ)

µ(T (ỹ, θ))
dỹ, (2.11)

p = h(1 − y) sin θ (2.12)

and

T = 1 − Bhy

1 + Bh
. (2.13)

Hence the volume flux Q (= ψ(1, θ)) is given by

Q = h

∫ 1

0

u dy = h − h3 cos θ

∫ 1

0

∫ y

0

1 − ỹ

µ(T (ỹ, θ))
dỹ dy, (2.14)

which may be re-written as

Q = h − h3 cos θ

3
f, (2.15)

where f = f(θ) (> 0) denotes the fluidity of the fluid film, defined by

f = 3

∫ 1

0

∫ y

0

1 − ỹ

µ(T (ỹ, θ))
dỹ dy = 3

∫ 1

0

(1 − y)2

µ(T (y, θ))
dy. (2.16)

In the special case of constant viscosity µ ≡ 1 the fluidity is simply equal to unity, i.e. f ≡ 1.
In the present work we shall be concerned only with “full-film” solutions, i.e. solutions

for which h is continuous, finite and non-zero for all −π < θ ≤ π, corresponding to a
continuous film of fluid covering the entire outside or inside of the cylinder. In particular,
for such solutions equations (2.13) and (2.16) show that f depends on θ only through its
dependence on h, and hence, using (2.15), only through its dependence on cos θ. Hence
h, u and T depend on θ only through cos θ, and so the flow has top-to-bottom symmetry
(but not left-to-right symmetry). Moreover, at the top and the bottom of the cylinder
(θ = ±π/2) the film thickness is simply h = Q (from which we trivially deduce that Q > 0)
and the velocity is a uniform (i.e. independent of y) “plug flow” u ≡ 1 across the film.

The fluid load in/on the cylinder, M (> 0), is given by

M =

∫ π

−π

h dθ = 2

∫ π

0

h dθ. (2.17)

† Note that the rescaled stream function ψ = ψ(y, θ) satisfies u = 1

h
∂ψ
∂y

and v = − ∂ψ
∂θ

+ y
h

dh
dθ

∂ψ
∂y

. Leslie,

Wilson and Duffy (45) erroneously omitted the second term from their corresponding expression for v.
Fortunately, none of their subsequent results are affected by this oversight.
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With the viscosity model µ = µ(T ) prescribed, the film thickness h is determined in
terms of Q by the algebraic equation (2.15) in which f is given by (2.16). The value of Q is
determined from either an appropriate criticality condition (given in Section 5) or from the
condition of prescribed load using (2.17). The properties and behaviour of the solutions in
these two cases are discussed in detail in Sections 5 and 6, respectively, but in both cases,
the solutions for u, ψ, p and T are given explicitly by (2.10)–(2.13), respectively.

3. The Special Case of Constant Viscosity

If either there is no heat transfer to or from the atmosphere at the free surface (i.e. in
dimensional terms if αth = 0) so that B = 0 (in which case the fluid film is isothermal
with constant temperature T ≡ 1) or the viscosity is independent of temperature (i.e. in
dimensional terms if λ = 0) so that V = 0 (in which case the fluid film is non-isothermal
with non-constant temperature T 6≡ 1), then the fluid has constant viscosity µ ≡ 1 and
fluidity f ≡ 1. In either case we recover the classical constant-viscosity solution derived by
Moffatt (2), denoted by h = h0, u = u0, ψ = ψ0, Q = Q0 and M = M0, where

u0 = 1 − h2
0 cos θ

2
(2 − y)y, (3.1)

ψ0 = h0y − h3
0 cos θ

6
(3 − y)y2, (3.2)

Q0 = h0 −
h3

0 cos θ

3
(3.3)

and

M0 = 2

∫ π

0

h0 dθ. (3.4)

Figure 2 shows contours of the flux Q0 given by (3.3) in the θ/π–h0 plane, which, since
they are by definition curves on which Q0 = constant, represent candidate solutions for the
free surface h0 = h0(θ). In particular, Figure 2 shows that full-film solutions are possible
only for values of Q0 satisfying 0 < Q0 ≤ Qc0, where Qc0 = 2/3 denotes the flux of the
critical solution above which full-film solutions are not possible, and that these solutions
have loads M0 satisfying 0 < M0 ≤ Mc0, where Mc0 denotes the load of the critical solution.
A detailed description of the other (i.e. non-full-film) solutions of (3.3) is given by Duffy
and Wilson (9). When 0 < Q0 ≤ Qc0 the full-film solution of (3.3) for h0 may be written
explicitly in terms of Q0 and θ as

h0 =



























2

(cos θ)1/2
cos

[

2π

3
− 1

3
cos−1

(

−3

2
Q0[cos θ]1/2

)]

if |θ| < π/2,

Q0 if |θ| = π/2,

2

(− cos θ)1/2
sinh

[

1

3
sinh−1

(

3

2
Q0[− cos θ]1/2

)]

if π/2 < |θ| ≤ π,

(3.5)

and has load M0 satisfying 0 < M0 ≤ Mc0 given by (3.4). The critical solution, denoted by
h0 = hc0, u0 = uc0 and ψ0 = ψc0, is obtained by substituting Q0 = Qc0 = 2/3 into (3.1),
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Fig. 2 Contours of the flux in the constant-viscosity case, Q0, given by (3.3) in the θ/π–h0 plane.
The contours are drawn for Q0/Qc0 = 1/6, 1/3, 1/2, . . . , 3, where Qc0 = 2/3.

(3.2) and (3.5), and from (3.4) has load M0 = Mc0, where

Mc0 = 2

∫ π

0

hc0 dθ ≃ 4.44272. (3.6)

As Figure 2 shows, the critical film thickness hc0 has a corner at θ = 0 (with corresponding
corners in all of the other streamlines ψc0 = constant also at θ = 0) given by hc0 =
1−Hc0|θ|+O(θ2), where the magnitude of the slope of the corner, denoted by Hc0, is given
by Hc0 = 1/

√
6 ≃ 0.40825.†

4. The General Case of Non-Constant Viscosity

In general, if there is heat transfer to or from the atmosphere at the free surface (i.e. in
dimensional terms if αth > 0) so that B > 0 and the viscosity depends on temperature (i.e.
in dimensional terms if λ > 0) so that V 6= 0, then the fluid film is non-isothermal with,
in general, non-constant temperature, viscosity and fluidity. In the particular case of the
exponential viscosity model (2.5) we have

µ = exp(−V (T − 1)) = exp

(

BV hy

1 + Bh

)

= exp(Vy), (4.1)

where, for brevity, we have introduced the notation V = V(θ) defined by

V =
BV h

1 + Bh
, (4.2)

† Note that Moffatt (2) gave slightly inaccurate values of Mc0 and Hc0, corresponding to Mc0 = 4.428
and Hc0 = 0.577 in the present notation.
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so that (2.10) yields the azimuthal velocity

u = 1 − h2 cos θ

V2
[V − 1 + (1 − V(1 − y)) exp(−Vy)] , (4.3)

(2.11) yields the stream function

ψ = hy − h3 cos θ

V3
[(V − 1)(Vy − 1) + 1 − (2 − V(1 − y)) exp(−Vy)] (4.4)

and (2.16) yields the fluidity

f =
3

V3

[

(V − 1)2 + 1 − 2 exp(−V)
]

. (4.5)

Note that the azimuthal velocity profile (4.3) is, in general, very different from the simple
parabolic velocity profile in the constant-viscosity case (3.1), and that the fluidity (4.5)
is a monotonically decreasing function of V satisfying f = O(exp(−V)/(−V)3) → ∞ as
V → −∞, f = 1 + O(V) as V → 0, and f = O(1/V) → 0+ as V → ∞.

The contours of the flux Q given by (2.15) and (4.5) are qualitatively similar to those in
the constant-viscosity case shown in Figure 2, and hence, as in the constant-viscosity case,
there is a critical flux Qc = Qc(B, V ) with a corresponding critical load Mc = Mc(B, V )
(both of which, of course, now depend on both B and V ) such that full-film solutions exist
only for 0 < Q ≤ Qc (i.e. for 0 < M ≤ Mc). For future reference, the corresponding critical
solution (with Q = Qc and M = Mc) is denoted by µ = µc, h = hc, u = uc, ψ = ψc, T = Tc

and f = fc.

5. The Critical Solution

In this Section we consider the properties and behaviour of the non-constant-viscosity
critical solution with load M = Mc introduced in Section 4 such that full-film solutions
exist only for 0 < M ≤ Mc. Not only is this generalisation of the classical constant-
viscosity critical solution of some interest in its own right, but, as we shall see subsequently
in Section 6, it is crucial to understanding the properties and behaviour of solutions with a
prescribed load.

As Figure 2 illustrates, the unique feature of the critical solution is that Q has a saddle
point at θ = 0 and h = hc(0), at which point ∂Q/∂θ = 0 and ∂Q/∂h = 0, which leads to
the criticality condition

d

dh

(

fh3

3

)

= 1 (5.1)

evaluated at θ = 0. For the exponential viscosity model (4.1) the criticality condition (5.1)
yields

V2 + 2V(V − 2) − 2V + 6 − B2V (V − V)2 − 2(V − V + 3) exp(−V) = 0 (5.2)

evaluated at θ = 0, where V is given by (4.2). Solving (5.2) yields the value of V(0) and
hence the value of hc(0), and then (2.15) with fc given by (4.5) yields the value of Qc and
the solution for hc. The solutions for uc, ψc, Tc and Mc are then given by (4.3), (4.4), (2.13)
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Fig. 3 Critical film thickness hc plotted as a function of θ/π for (a) B = 0 (dash-dot line) and
B = 10n (n = −1, −0.75, −0.5, . . . , 1.5) for V = −5 (dotted lines) and B = 10n (n = −1, −0.75,
−0.5, . . . , 1) for V = 5 (solid lines) and the leading-order asymptotic solution in the limit B → ∞
for V = −5 and V = 5 (dashed lines), and (b) V = −30, −25, −20, . . . , 30 for B = 1.

and (2.17), respectively. As in the constant-viscosity case, the critical film thickness hc has
a corner at θ = 0 (with corresponding corners in all of the other streamlines ψc = constant
also at θ = 0) given by hc = hc(0) − Hc|θ| + O(θ2), where the magnitude of the slope of
the corner, denoted by Hc = Hc(B, V ) (which, of course, now depends on both B and V )
is given by

Hc =

(

V 2
[

(V − 1)2 + 1 − 2 exp(−V)
]

2B2(V − V)2[V 2 + 2V (V − 2) − 2V + 6 − [(V − V − 2)2 + 2] exp(−V)]

)1/2

(5.3)

evaluated at θ = 0. In fact, rather unexpectedly, a general version of (5.3) valid for any
viscosity model can be also obtained and is given by

Hc =









∫ 1

T̄

(T − T̄ )2

µ(T )
dT

2

∫ 1

T̄

T (3T − 2T̄ )

µ(T )
dT

∫ 1

T̄

(T − T̄ )(3T − T̄ )

µ(T )
dT









1/2

, (5.4)

where T̄ = Tc(1, 0) = 1/(1 + Bhc(0)) is the critical free-surface temperature evaluated at
θ = 0.

Figure 3 shows the critical film thickness hc plotted as a function of θ/π for a range of
values of (a) B and (b) V . In particular, Figure 3 shows that hc is a decreasing function
of |θ|, an increasing (decreasing) function of B for positive (negative) V , and an increasing
function of V . Figure 4 shows the critical load Mc plotted as a function of (a) B for a range
of values of V and (b) V for a range of values of B. In particular, Figure 4 shows that Mc is
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Fig. 4 Critical load Mc plotted as a function of (a) B for V = −20, −16, −12, . . . , 20 with the
asymptotic solutions in the limits B → 0+ and B → ∞ for V = −4 and 4 (dotted lines), and (b)
V for B = 0 and B = 10n (n = −1.5, −1.25, −1, . . . , 1.5) with the asymptotic solutions in the
limits V → 0, V → ∞ and V → −∞ for B = 1 (dotted lines) and the leading-order asymptotic
solution in the limit B → ∞ (dashed line).

Fig. 5 Critical velocity profiles uc plotted as a function of Y = hcy at θ = 0, π/32, π/16, . . . , π
when B = 1 for (a) V = −5 and (b) V = 5.

an increasing (decreasing) function of B for positive (negative) V , and increasing function
of V .

Figure 5 shows critical velocity profiles uc at various values of θ in the range 0 ≤ θ ≤ π
when B = 1 for (a) V = −5 and (b) V = 5. The corresponding profiles in the range
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−π < θ < 0 follow immediately from the top-to-bottom symmetry of the flow. In particular,
Figure 5 shows that uc is an increasing function of |θ|, a decreasing (increasing) function of
y on the right-hand side 0 ≤ |θ| < π/2 (the left-hand side π/2 < |θ| ≤ π) of the cylinder,
and a uniform plug flow uc ≡ 1 at the top and bottom of the cylinder |θ| = π/2.

Leslie (46) gives plots of the critical film thickness at θ = 0, hc(0), and the magnitude
of the slope of the corner in the critical film thickness at θ = 0, Hc, as well as the critical
free-surface velocity and temperature at θ = 0, uc(1, 0) and Tc(1, 0), as functions of both B
and V , all of which are omitted here for brevity.

In order to complete our understanding of the effects of varying B and V on the critical
solution, in the following Subsections we analyse the behaviour of the critical solution in
the asymptotic limits B → 0+, B → ∞, V → 0, V → ∞ and V → −∞.

5.1 The Limit of Weak Heat Transfer B → 0+

At leading order in the limit of weak heat transfer at the free surface, B → 0+, the free
surface is perfectly insulated (i.e. ∂Tc/∂y = 0 on y = 1) and the fluid film is isothermal with
constant temperature Tc ≡ 1, viscosity µc ≡ 1 and fluidity fc ≡ 1. Hence the leading-order
solutions for hc, Hc, Mc and uc are simply the constant-viscosity solutions hc0, Hc0, Mc0

and uc0 given in Section 3. The effect of variations in B first appear at O(B), to which
order the solutions for hc, Hc, Mc, uc and Tc are given by

hc = hc0 +
BV hc0

24
(3hc0 + 1) + O(B2), (5.5)

Hc = Hc0 +
7BV

24
√

6
+ O(B2), (5.6)

Mc = Mc0 +
BV

24
(3CB0 + Mc0) + O(B2), (5.7)

uc = uc0 −
BV hc

2
0y cos θ

24

[

hc0(8y
2 − 15y + 6) + 2 − y

]

+ O(B2) (5.8)

and

Tc = 1 − Bhc0y − B2hc0y

24
[V (3hc0 + 1) − 24hc0] + O(B3), (5.9)

where the constant CB0 is given by

CB0 = 2

∫ π

0

hc
2
0 dθ ≃ 3.21962. (5.10)

Note that the solutions (5.5)–(5.9) are valid for a general viscosity model satisfying µ = 1
and dµ/dT = −V when Tc = 1 to the order shown (but not to higher orders). The same
is true for the asymptotic solution in the limit of weak thermoviscosity V → 0 presented
subsequently in Subsection 5.3. The solution (5.9) shows that the effect of weak heat transfer
at the free surface is to slightly decrease the temperature from its constant isothermal value
Tc ≡ 1 throughout the fluid film, and thus to slightly increase (decrease) the viscosity from
its constant isothermal value µc ≡ 1, causing hc, Hc and Mc to slightly increase (decrease)
from their isothermal values when V > 0 (V < 0). Furthermore, since the sign of the first-
order term in (5.8) is simply the sign of −V cos θ, the effect of weak heat transfer at the free
surface is to slightly decrease (increase) uc from its isothermal value uc0 when V cos θ > 0
(V cos θ < 0). The asymptotic result (5.7) is included in Figure 4(a).
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5.2 The Limit of Strong Heat Transfer B → ∞
At leading order in the limit of strong heat transfer at the free surface, B → ∞, the free
surface is at the same uniform temperature as the atmosphere (i.e. Tc = 0 on y = 1) and
the fluid film has non-constant temperature Tc = T̂ = 1 − y and viscosity µc = µ̂ = µ(T̂ ).
As Duffy and Wilson (44) showed, from (2.10) and (2.16) the leading-order solutions for uc

and fc, denoted by û and f̂ , are given by

û = 1 − ĥ2 cos θ

∫ 1

T̂

T

µ(T )
dT (5.11)

and

f̂ = 3

∫ 1

0

T 2

µ(T )
dT, (5.12)

where ĥ denotes the leading-order solution for hc. Closed-form expressions for f̂ for
the linear, exponential and Eyring viscosity models are given by Wilson and Duffy (41).

Moreover, since, for any viscosity model, f̂ = f̂(V ) is a constant (and not a function of θ

as, in general, f is) the leading-order solutions for hc, Hc and Mc, denoted by ĥ, Ĥ and
M̂ , are given simply by rescaling the corresponding constant-viscosity solutions hc0, Hc0,
Qc0 and Mc0 according to ĥ = f̂−1/2hc0, Ĥ = f̂−1/2Hc0 = (6f̂)−1/2, Q̂ = f̂−1/2Qc0 and

M̂ = f̂−1/2Mc0. For the exponential viscosity model V ∼ V in the limit B → ∞, and so
the leading-order solutions for µc, uc, ψc and fc are given simply by (4.1), (4.3)–(4.5) with
V replaced by V , respectively.

As might have been anticipated, this simple re-scaling property does not extend to higher
orders. Specifically, to higher order the solutions for hc, Hc, Mc, uc and Tc are given by

hc = ĥ +
3 − (V + 3)f̂

3Bf̂
+ O

(

1

B2

)

, (5.13)

Hc = Ĥ +
V 2f̂2 + 3(V + 6)f̂ − 18

3B2(6f̂)3/2
+ O

(

1

B3

)

, (5.14)

Mc = M̂ +
2π[3 − (V + 3)f̂ ]

3Bf̂
+ O

(

1

B2

)

, (5.15)

uc = û +
hc0 cos θ

3V 2Bf̂3/2

[{

V (5 − 3y)f̂ − 6
}

V y exp(−V y)

+
{

V (2V + 1)f̂ − 6(V − 1)
}

(1 − exp(−V y))
]

+ O

(

1

B2

)

(5.16)

and

Tc = T̂ +
f̂1/2y

Bhc0

− (3 − V f̂)y

3B2hc
2
0

+ O

(

1

B3

)

. (5.17)

The solution (5.17) shows that the effect of large-but-finite heat transfer at the free surface is
to slightly increase the temperature from its leading-order value Tc = T̂ = 1−y throughout
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the fluid film, and thus to slightly decrease (increase) the viscosity from its leading-order
value µc = µ̂ = exp(V y), causing hc, Hc and Mc to slightly decrease (increase) from their
leading-order values when V > 0 (V < 0). The asymptotic result (5.15) is included in
Figure 4(a).

5.3 The Limit of Weak Thermoviscosity V → 0

At leading order in the limit of weak thermoviscosity, V → 0, the fluid film has non-constant
temperature Tc 6≡ 1 but constant viscosity µc ≡ 1 and fluidity fc ≡ 1. Hence, like in the
limit B → 0+, the leading-order solutions for hc, Hc, Mc and uc are simply the constant-
viscosity solutions hc0, Hc0, Mc0 and uc0 given in Section 3. The effect of variations in V
first appear at O(V ), to which order the solutions for hc, Hc, Mc, uc and Tc are given by

hc = hc0 +
BV hc0[3(1 + B)hc0 + 1]

24(1 + B)(1 + Bhc0)
+ O(V 2), (5.18)

Hc = Hc0 +
BV (3B2 + 9B + 7)

24
√

6(1 + B)3
+ O(V 2), (5.19)

Mc = Mc0 +
BV

12(1 + B)

∫ π

0

hc0[3(1 + B)hc0 + 1]

1 + Bhc0

dθ + O(V 2), (5.20)

uc = uc0 −
BV hc

2
0y cos θ[(1 + B)hc0(8y

2 − 15y + 6) + 2 − y]

24(1 + B)(1 + Bhc0)
+ O(V 2) (5.21)

and

Tc = 1 − Bhc0y

1 + Bhc0

− B2V hc0y[3(1 + B)hc0 + 1]

24(1 + B)(1 + Bhc0)3
+ O(V 2). (5.22)

The solutions in this limit are somewhat similar to those in the limit B → 0+ described
previously in Subsection 5.1 and have the corresponding physical interpretation. There is,
however, one noteworthy difference. Whereas in the limit B → 0+ the sign of the first-
order term in (5.8) is simply the sign of −V cos θ, in the present limit it is the sign of
the somewhat more complicated expression −V cos θ[(1 + B)hc0(8y

2 − 15y + 6) + 2 − y].
Thus for 0 < hc0 ≤ 1/(1 + B) and for 0 < y < yc0 when 1/(1 + B) < hc0 ≤ 1 the effect of
weak thermoviscosity is to slightly decrease (increase) uc from its isothermal value uc0 when
V cos θ > 0 (V cos θ < 0), whereas for yc0 < y ≤ 1 when 1/(1 + B) < hc0 ≤ 1 the effect is
the opposite, where y = yc0 (0 < yc0 ≤ 1) satisfies (1 + B)hc0(8y

2 − 15y + 6) + 2 − y = 0.
This behaviour is the first hint of the occurrence of the backflow described subsequently in
Section 7. The asymptotic result (5.20) is included in Figure 4(b).

5.4 The Limit of Strong Positive Thermoviscosity V → ∞
In the limit of strong positive thermoviscosity, V → ∞, the solutions for hc, Hc, Mc, uc

and Tc are given by

hc =
V 1/2hc0√

3
− 1

3B
+ O

(

1

V 1/2

)

, (5.23)

Hc =
V 1/2

3
√

2
+

√
2(3B2 − 1)

18B2V 1/2
+ O

(

1

V

)

, (5.24)
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Mc =
V 1/2Mc0√

3
− 2π

3B
+ O

(

1

V 1/2

)

, (5.25)

uc = 1− hc
2
0 cos θ

3
[1− exp(−V y)]−

√
3hc0 cos θ

9BV 1/2
[1− (3V y +1) exp(−V y)]+O

(

1

V

)

(5.26)

and

Tc = 1 − y +

√
3y

BV 1/2hc0

− 2y

B2V hc
2
0

+ O

(

1

V 3/2

)

. (5.27)

These solutions show that at leading order in the limit of strong positive thermoviscosity the
temperature is given by Tc = 1−y and the viscosity µc = O(exp(V y)) is exponentially large
outside a narrow boundary layer of width O(1/V ) ≪ 1 near the cylinder y = 0, resulting
in a uniform plug flow uc ≡ 1 − hc

2
0 cos θ/3 outside the boundary layer and a large film

thickness and load of O(V 1/2) ≫ 1. The asymptotic result (5.25) is included in Figure 4(b).

5.5 The Limit of Strong Negative Thermoviscosity V → −∞
In the limit of strong negative thermoviscosity, V → −∞, the solutions for hc, Hc, Mc, uc

and Tc are given by

hc =
1

B(−V )

[

log

(

B2V 2

2

)

− WV ∞ − 1

]

+ O

(

log(−V )2

V 2

)

, (5.28)

Hc =
1

B(−V )
+ O

(

log(−V )

V 2

)

, (5.29)

Mc =
1

B(−V )

[

2π log

(

B2V 2

2

)

− CV ∞ − 2π

]

+ O

(

log(−V )2

V 2

)

, (5.30)

uc = 1 − cos θ

B2V 2

[(

−B2V 2WV ∞

2 cos θ

)y {[

log

(

B2V 2

2

)

− WV ∞

]

(1 − y) + y

}

− log

(

B2V 2

2

)

+ WV ∞

]

+ O

(

log(−V )2

−V

)

(5.31)

and

Tc = 1 − y

(−V )

[

log

(

B2V 2

2

)

− WV ∞ − 1

]

+ O

(

log(−V )

V 2

)

, (5.32)

where the function WV ∞ = WV ∞(θ) is given by

WV ∞ = W0

(

−cos θ

e

)

(5.33)

and the constant CV ∞ is given by

CV ∞ = 2

∫ π

0

WV ∞ dθ ≃ −0.73144, (5.34)
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in which W0 = W0(x) denotes the principal real branch of the Lambert W function†, and
it can be shown that the sign of WV ∞ is the same as the sign of − cos θ. The solutions
(5.28)–(5.32) show that at leading order in the limit of strong negative thermoviscosity the
temperature is given by Tc ≡ 1 and the viscosity µ = O(V −2y) decreases from O(1) at the
cylinder y = 0 to O((−V )−2) ≪ 1 at the free surface y = 1, resulting in a velocity that
increases (decreases) from uc = 1 at the cylinder [where there is a narrow boundary layer of
width O(1/ log(−V )) ≪ 1] to uc = 1 + WV ∞/2 at the free surface [where there is another
narrow boundary layer also of width O(1/ log(−V )) ≪ 1] when cos θ < 0 (cos θ > 0), and
a small film thickness and load of O(log(−V )/(−V )) ≪ 1. The asymptotic result (5.30) is
included in Figure 4(b).

6. Full-Film Solution with a Prescribed Load

In this Section we consider the properties and behaviour of the non-constant-viscosity full-
film solution with a prescribed load M . As described in Section 4, such solutions exist only
when 0 < M ≤ Mc, where Mc is the load of the critical solution described in Section 5 and
shown in Figure 4. Thus for a prescribed value of M such solutions exist, in general, only for
restricted ranges of values of B and V , and the critical values of B and V for such solutions
to exist, denoted by Bc and Vc, are precisely the values of B and V for which the critical
solution has load Mc = M . The ranges of values of B and V depend on the relative size of
the prescribed load M compared to the load of the critical solution in the limit B → 0+ (i.e.
in the constant-viscosity case), namely Mc0 ≃ 4.44272, and the load of the critical solution

in the limit B → ∞, namely M̂ = f̂−1/2Mc0, where f̂ = f̂(V ) is given by (5.12), described
previously. Specifically, as Figure 4(a) shows, for positive V there are no full-film solutions
for any value of B when M ≥ M̂ , full-film solutions for B ≥ Bc when Mc0 < M < M̂ ,
and full-film solutions for all values of B when M ≤ Mc0, while for negative V there are no
full-film solutions for any value of B when M > Mc0, full-film solutions for B ≤ Bc when
M̂ < M ≤ Mc0, and full-film solutions for all values of B when M ≤ M̂ . In particular, if
we denote the value of V satisfying M = M̂ by V = V∞, then there are full-film solutions in
the limit B → ∞ for V ≥ V∞, but not for V < V∞. Similarly, as Figure 4(b) shows, for all
values of B there are full-film solutions for V ≥ Vc, but not for V < Vc. This behaviour is
summarised in Figure 6, which shows the critical curves (Bc, Vc) for a range of values of M .
For each value of M the corresponding critical curve (Bc, Vc) divides the B–V parameter
plane into the region above the curve in which full-film solutions exist and the region below
the curve in which they do not exist.

Figure 7 shows the film thickness h when M = 2 (< Mc0) plotted as a function of θ/π
for a range of values of B for (a) V = ±4 and (b) V = ±5. Figure 7 shows that when
M = 2 for V = 5, V = 4 and V = −4 (all of which satisfy V > V∞ ≃ −4.51567) there
are full-film solutions for all values of B, but for V = −5 < V∞ there are full-film solutions
only for B ≤ Bc ≃ 19.84427. Figure 8(a) shows the film thickness h plotted as a function
of θ/π for a range of values of B when M = 6 (> Mc0) and V = 5, in which case there
are full-film solutions for B ≥ Bc ≃ 0.99344. Note that there is no corresponding plot for
M = 6 (> Mc0) and V = −5 because there are no full-film solutions when M > Mc0 and

† The Lambert W function, which is defined to be the solution for W = W (x) of W exp(W ) = x, has
two real branches, namely the principal real branch W0(x) with domain [−1/e,∞) and range [−1,∞) and
the lower real branch W−1(x) with domain [−1/e, 0) and range (−∞,−1].
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Fig. 6 The critical curves (Bc, Vc) for M = 1, 2, 3, . . . , 12 and M = Mc0 ≃ 4.44272. For each
value of M the corresponding curve (Bc, Vc) divides the B–V parameter plane into the region above
the curve in which full-film solutions exist and the region below the curve in which they do not
exist.

Fig. 7 Film thickness h when M = 2 (< Mc0) plotted as a function of θ/π for (a) B = 0 (dash-
dash-dotted line), B = 10n (n = −0.5, 0, 0.5, 1, 1.5, 2) for V = −4 (dotted lines) and B = 10n

(n = −0.5, 0, 0.5, 1) for V = 4 (solid lines) together with the leading-order asymptotic solution in
the limit B → ∞ for V = −4 and V = 4 (dashed lines), and (b) B = 0 (dash-dash-dotted line),
B = 10n (n = 0, 0.5, 1) for V = −5 (dotted lines) and B = 10n (n = −0.5, 0, 0.5) for V = 5 (solid
lines) together with the leading-order asymptotic solution in the limit B → ∞ for V = 5 (dashed
line) and the critical solution for V = −5 with B = Bc ≃ 19.84427 (dash-dotted line).
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Fig. 8 Film thickness h plotted as a function of θ/π for (a) B = 10n (n = 0.25, 0.5, 0.75, 1,
1.25) (solid lines) together with the leading-order asymptotic solution in the limit B → ∞ (dashed
line) and the critical solution with B = Bc ≃ 0.99344 (dash-dotted line) when M = 6 (> Mc0)
and V = 5, and (b) V = −12, −8, −4, . . . , 20 (solid lines) together with the leading-order
asymptotic solution in the limit V → ∞ (i.e. h ≃ 0.31831) (dashed line) and the critical solution
with V = Vc ≃ −14.83331 (dash-dotted line) when M = 2 (< Mc0) and B = 1.

V < 0. Figure 8(b) shows the film thickness h plotted as a function of θ/π for a range of
values of V when M = 2 (< Mc0) and B = 1, in which case there are full-film solutions for
V ≥ Vc ≃ −14.83331 (< 0). Note that the corresponding plot for M = 6 (> Mc0) (which
is omitted for brevity) is qualitatively similar to Figure 8(b) except that Vc > 0. Figures 7
and 8 also show that h is a decreasing function of |θ|, but, in contrast to the corresponding
results for hc shown in Figure 3, show that near θ = 0 the film thickness h is a decreasing
(increasing) function of B for positive (negative) V and a decreasing function of V , but that
near θ = π it behaves in the opposite way in order to satisfy the condition of prescribed
load.

The velocity profiles u are qualitatively similar to the critical velocity profiles shown in
Figure 5.

Leslie (46) gives plots of the film thickness, free-surface velocity and free-surface
temperature at θ = 0 and θ = π as functions of both B and V , all of which are again
omitted here for brevity.

In the following Subsections we analyse the behaviour of the full-film solution with a
prescribed load in the asymptotic limits B → 0+, B → ∞, V → 0, V → ∞ and M →
0. Note that (unlike in the corresponding analysis of the critical solution described in
Subsection 5.5) there is no solution with prescribed load in the limit V → −∞, and, of
course, there is no solution with prescribed load in the limit M → ∞. Moreover, there are
solutions with a prescribed load in the limits B → 0+ and V → 0 only when M ≤ Mc0.
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6.1 The Limit of Weak Heat Transfer B → 0+

In the limit of weak heat transfer at the free surface, B → 0+, the solutions for h, u and T
are given by

h = h0 +
BV (IB0 − h4

0 cos θ)

12(1 − h2
0 cos θ)

+ O(B2), (6.1)

u = u0 −
BV h0y cos θ

12(1 − h2
0 cos θ)

[

h2
0(1 − h2

0 cos θ)(4y2 − 7y + 2)

+ (IB0 − h2
0)(2 − y)

]

+ O(B2) (6.2)

and

T = 1 − Bh0y − B2y
[

V (IB0 − h4
0 cos θ) − 12h2

0(1 − h2
0 cos θ)

]

12(1 − h2
0 cos θ)

+ O(B3), (6.3)

where the constant IB0 = IB0(M0) (0 < IB0 < 1) is given by

IB0 =

∫ π

0

h4
0 cos θ

1 − h2
0 cos θ

dθ

∫ π

0

1

1 − h2
0 cos θ

dθ

, (6.4)

and h0 and u0 are the constant-viscosity solutions with load M0 = M (≤ Mc0) given
in Section 3. Note that the solutions (6.1)–(6.3) are valid for a general viscosity model
satisfying µ = 1 and dµ/dT = −V when T = 1 to the order shown (but not to higher
orders). The same is true for the asymptotic solution in the limit of weak thermoviscosity
V → 0 presented subsequently in Subsection 6.3. Like the corresponding behaviour of the
critical solution described in Subsection 5.1, the solution (6.3) shows that the effect of weak
heat transfer at the free surface is to slightly decrease the temperature from its constant
isothermal value T ≡ 1 throughout the fluid film, and thus to slightly increase (decrease)
the viscosity from its constant isothermal value µ ≡ 1 when V > 0 (V < 0). However,
unlike the corresponding behaviour of the critical solution, the effect on h depends on the
sign of V (IB0 −h4

0 cos θ) (rather than just V ). Thus when V > 0 (V < 0) the effect of weak
heat transfer at the free surface is to slightly decrease (increase) h from its isothermal value
when |θ| < θ̄ with the opposite behaviour when |θ| > θ̄, where θ = θ̄ (0 < θ̄ ≤ π/2) satisfies
IB0 − h4

0 cos θ = 0.

6.2 The Limit of Strong Heat Transfer B → ∞
In the limit of strong heat transfer at the free surface, B → ∞, the solutions for h, u and
T are given by

h = ĥ +
h1

B
+ O

(

1

B2

)

, (6.5)

u = û +
h0 cos θ

V 2Bf̂1/2
[{V (1 − y) − 2(1 + h1)}V y exp(−V y)

− {V (1 + 2h1) − 2(1 + h1)} (1 − exp(−V y))] + O

(

1

B2

)

(6.6)
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and

T = T̂ +
f̂1/2y

Bh0

− f̂(1 + h1)y

B2h2
0

+ O

(

1

B3

)

, (6.7)

where h1 = h1(θ) is given by

h1 =
(IB∞ − h2

0 cos θ)[3 − (V + 3)f̂ ]

3f̂(1 − h2
0 cos θ)

(6.8)

and the constant IB∞ = IB∞(M0) (0 < IB∞ < 1) is given by

IB∞ =

∫ π

0

h2
0 cos θ

1 − h2
0 cos θ

dθ

∫ π

0

1

1 − h2
0 cos θ

dθ

. (6.9)

As in the corresponding analysis of the critical solution described in Subsection 5.2, the
leading-order solutions for h and Q, denoted by ĥ and Q̂, are given simply by rescaling
the corresponding constant-viscosity solutions h0 and Q0 according to ĥ = f̂−1/2h0 and
Q̂ = f̂−1/2Q0, where M = f̂−1/2M0, and the leading-order solutions for u and f , denoted
by û and f̂ , are again given by (5.11) and (5.12), respectively. Like the corresponding
behaviour of the critical solution described in Subsection 5.2, the solution (6.7) shows that
the effect of large-but-finite heat transfer at the free surface is to slightly increase the
temperature from its leading-order value T = T̂ = 1− y throughout the fluid film, and thus
to slightly decrease (increase) the viscosity from its leading-order value µ = µ̂ = exp(V y)
when V > 0 (V < 0). However, unlike the corresponding behaviour of the critical solution,

the effect on h depends on the sign of (IB∞ − h2
0 cos θ)[3 − (V + 3)f̂ ] (rather than just

3− (V + 3)f̂). Thus when V > 0 (V < 0), the effect of large-but-finite heat transfer at the
free surface is to slightly increase (decrease) h from its isothermal value when |θ| < θ̄ with
the opposite behaviour when |θ| > θ̄, where θ = θ̄ (0 < θ̄ ≤ π/2) satisfies IB∞−h2

0 cos θ = 0.

6.3 The Limit of Weak Thermoviscosity V → 0

In the limit of weak thermoviscosity, V → 0, the solutions for h, u and T are given by

h = h0 +
BV [IV 0(1 + Bh0) − h4

0 cos θ]

12(1 − h2
0 cos θ)(1 + Bh0)

+ O(V 2), (6.10)

u = u0 −
BV h0y cos θ

12(1 − h2
0 cos θ)(1 + Bh0)

{

h2
0(1 − h2

0 cos θ)(4y2 − 7y + 2)

+
[

IV 0(1 + Bh0) − h2
0

]

(2 − y)
}

+ O(V 2) (6.11)

and

T = 1 − Bh0y

1 + Bh0

− B2V y
[

IV 0(1 + Bh0) − h4
0 cos θ

]

12(1 − h2
0 cos θ)(1 + Bh0)3

+ O(V 2), (6.12)
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where the constant IV 0 = IV 0(M0, B) (0 < IV 0 < 1) is given by

IV 0 =

∫ π

0

h4
0 cos θ

(1 − h2
0 cos θ)(1 + Bh0)

dθ

∫ π

0

1

1 − h2
0 cos θ

dθ

, (6.13)

and h0 and u0 are the constant-viscosity solutions with load M0 = M (≤ Mc0) given in
Section 3. Like the corresponding behaviour of the critical solution described in Subsection
5.3, the solutions in this limit are somewhat similar to those in the limit B → 0+ described
previously in Subsection 6.1 and have the corresponding physical interpretation.

6.4 The Limit of Strong Positive Thermoviscosity V → ∞
In the limit of strong positive thermoviscosity, V → ∞, the solutions for h, u and T are
given by

h =
M

2π
+

M2 cos θ(2π + BM)

8π3BV
+ O

(

1

V 2

)

, (6.14)

u = 1 − M cos θ(2π + BM)

4π2BV

[

1 − exp

(

− BV My

2π + BM

)]

+ O

(

1

V 2

)

(6.15)

and

T = 1 − BMy

2π + BM
− M2y cos θ

2π(2π + BM)V
+ O

(

1

V 2

)

. (6.16)

These solutions show that, like the corresponding behaviour of the critical solution described
in Subsection 5.4, at leading order in the limit of strong positive thermoviscosity the
temperature is given by T = 1 − BMy/(2π + BM) and the viscosity

µ = O

[

exp

(

BV My

2π + BM

)]

(6.17)

is exponentially large outside a narrow boundary layer of width O(1/V ) ≪ 1 near the
cylinder y = 0, resulting in a uniform plug flow u ≡ 1 outside the boundary layer.
However, unlike the corresponding behaviour of the critical solution, the leading-order film
thickness is an O(1) constant, and the effect of large-but-finite positive thermoviscosity is
to slightly decrease T from its leading-order value throughout the fluid film, and thus to
slightly decrease (increase) u outside the boundary layer and slightly increase (decrease) h,
respectively, from their leading-order values when cos θ > 0 (cos θ < 0).

6.5 The Limit of Small Load M → 0

In the limit of small load, M → 0, the solutions for h, u and T are given by

h =
M

2π
+

M3 cos θ

24π3
+ O(M4), (6.18)

u = 1 − M2 cos θ(2 − y)y

8π2
+

M3BV cos θ(3 − 2y)y2

48π3
+ O(M4) (6.19)
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Fig. 9 The regions of the B–V parameter plane in which backflow occurs for M = 0.1, 0.2,
0.3, . . . , 1.4. For each value of M the region in which backflow occurs is bounded below by the
critical curve (Bc, Vc) (solid lines) and above by the curve on which u(1, 0) = 0 (dashed lines),
which meet on the bounding curve on which uc(1, 0) = 0 (thick solid line). Also shown are the
asymptotic solutions for the upper and lower branches of the bounding curve given by (7.1) and
(7.2), respectively, (dashed lines).

and

T = 1 − MBy

2π
+

M2B2y

4π2
+ O(M3). (6.20)

These solutions show that, as might have been anticipated, at leading order in the limit of
small load the film is isothermal, T ≡ 1, the viscosity is constant, µ ≡ 1, the film thickness
is a small O(M) ≪ 1 constant, and there is a uniform plug flow u ≡ 1.

7. Backflow

In the special case of constant viscosity the azimuthal velocity u is always in the same
direction as the rotation of the cylinder (i.e. u ≥ 0 for all 0 ≤ y ≤ 1) and so backflow (i.e.
u < 0 somewhere in 0 < y ≤ 1) never occurs. It is therefore interesting to discover that
in the general case of non-constant viscosity there is a region of the B–V parameter plane
in which backflow occurs in a region on the right-hand side of the cylinder containing the
point on the free surface at θ = 0 (i.e. the point furthest from the cylinder at the azimuthal
location at which the local effect of gravity is strongest). Figure 9 shows the regions of the
B–V parameter plane in which backflow occurs for a range of values of M . The “bounding”
curve corresponding to uc(1, 0) = 0 divides the B–V parameter plane into the region to
the left of the curve in which uc(1, 0) > 0 in which backflow is impossible from the region
to the right of the curve in which uc(1, 0) < 0 in which backflow is possible (but may or
may not actually occur). As we have already seen, for each prescribed value of M full-film
solutions exist only above the corresponding critical curve (Bc, Vc) (described in Section 6
and shown in Figure 4). Hence, for sufficiently small prescribed values of M backflow occurs
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Fig. 10 Details of the streamlines of the flow near y = 1 and θ = 0 when B = 100 and V = −10
for (a) the solution with prescribed load M = 1/2 (Q ≃ 0.07642) in which the streamlines are
drawn for ψ/Q = 1487/1500 (the lowest visible streamline), 1488/1500, 1489/1500, . . . , 1 (the
stagnation streamline), 1501/1500 and 1502/1500 (inside the recirculation region), and (b) the
critical solution with load M = Mc ≃ 0.50800 (Q = Qc ≃ 0.07716) in which the streamlines are
drawn for ψ/Q = 87/100 (the lowest visible streamline), 88/100, 89/100, . . . , 1 (the stagnation
streamline), 101/100 and 102/100 (inside the recirculation region). In both cases the curve on
which u = 0 is shown with a dashed line and the stagnation points are shown with large dots.

in the narrow region bounded below by the critical curve (Bc, Vc) and above by the curve
on which u(1, 0) = 0, and these curves meet on the bounding curve on which uc(1, 0) = 0.
In the limit B → ∞ the upper and lower branches of the bounding curve satisfy

V = Vmax +
2
√

3Vmax(Vmax + 3)

B(2Vmax + 9)(Vmax + 6)1/2
+ O

(

1

B2

)

(7.1)

where Vmax ≃ −5.65658 satisfies 2V 2
max − 5Vmax + 6 − (Vmax + 6) exp(−Vmax) = 0, and

V = −4 log B − 4 log(log B) + 6 − 4 log 2 + O

(

log(log B)

log B

)

, (7.2)

respectively. In particular, (7.1) and (7.2) show that backflow never occurs for any value

of B when V ≥ Vmax, or, equivalently, when M ≥ Mmax = f̂(Vmax)
−1/2Mc0 ≃ 1.50315.

Furthermore, since the bounding curve lies to the right of the point (26.29946,−9.69044),
backflow never occurs for any value of V when B < Bmin ≃ 26.29946.

In order to illustrate backflow, Figure 10 shows details of the streamlines of the flow near
y = 1 and θ = 0 when B = 100 and V = −10 in two situations in which backflow occurs.
Specifically, Figure 10(a) shows streamlines of the solution with prescribed load M = 1/2,
while Figure 10(b) shows streamlines of the critical solution with load M = Mc ≃ 0.50800.
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8. Conclusions

In the present work we obtained a comprehensive description of steady thermoviscous
coating and rimming flow on a uniformly rotating horizontal cylinder. We found that, as
in the corresponding isothermal problem studied by Moffatt (2), there is a critical solution
with a corresponding critical load (which depends, in general, on both the Biot number B
and the thermoviscosity number V ) above which no full-film solutions exist.

In Section 5 we showed that the critical film thickness, hc, the magnitude of the slope
of the corner in the critical film thickness at θ = 0, Hc, and the critical load, Mc, are
increasing (decreasing) functions of B for positive (negative) V , and increasing functions of
V . For a positive (negative) fixed value of V the maximum (minimum) possible critical load
is attained in the limit of strong heat transfer at the free surface B → ∞ and is given by
M̂ = f̂−1/2Mc0, where f̂ = f̂(V ) is given by (5.12) and Mc0 ≃ 4.44272 is the critical load
in the constant-viscosity case. For a fixed value of B the critical film thickness, and hence
the critical load, become small like O(log(−V )/(−V )) ≪ 1 in the limit of strong negative
thermoviscosity V → −∞ and become large like O(V 1/2) ≫ 1 in the limit of strong positive
thermoviscosity V → ∞.

Full-film solutions with a prescribed load M exist only when 0 < M ≤ Mc, and Figure 6
shows how for each prescribed value of M the corresponding critical curve (Bc, Vc) divides
the B–V parameter plane into the region above the curve in which full-film solutions exist
from the region below the curve in which they do not exist. In particular, there are no full-
film solutions with a prescribed load for any value of B when M ≥ M̂ for positive V and
when M > Mc0 for negative V . In Section 6 we showed that near θ = 0 the film thickness
h is a decreasing (increasing) function of B for positive (negative) V , and a decreasing
function of B, but that near θ = π it behaves in the opposite way. For a fixed value of V
there are full-film solutions in the limit B → ∞ for V ≥ V∞, but not for V < V∞, where
V = V∞ satisfies M = M̂ . For a fixed value of B there is no full-film solution in the limit
V → −∞, while the leading-order film thickness is the O(1) constant h = M/2π in the
limit V → ∞.

In Section 7 we showed that, while by far the most common behaviour of the azimuthal
velocity is that it is always in the same direction as the rotation of the cylinder, for
sufficiently small prescribed values of M satisfying M < Mmax ≃ 1.50315 there is a narrow
region of the B–V parameter plane shown in Figure 9 in which backflow occurs in a region
on the right-hand side of the cylinder containing the point of the free surface at θ = 0. In
particular, backflow never occurs for any value of B when V ≥ Vmax ≃ −5.65658 or for any
value of V when B < Bmin ≃ 26.29946.

Lastly, in Appendix A we considered the distinguished limit of strong thermoviscosity
|V | → ∞ and weak heat transfer B → 0+ with V̂ = BV = O(1) in which the variation of
temperature across the film is small but the variation of viscosity across the film is still O(1),
and found qualitative agreement with but some quantitative differences from the previous
results. In particular, unlike in the limit V → ∞ described above, in the limit V̂ → ∞ the
critical film thickness, and hence the critical load, become large like O(V̂ ) ≫ 1.
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APPENDIX A

The Distinguished Limit of Strong Thermoviscosity and Weak Heat Transfer |V | → ∞ and B → 0+

with V̂ = BV = O(1)

In this Appendix we consider the distinguished limit discussed by Wilson and Duffy (42) of
strong thermoviscosity, |V | → ∞, and weak heat transfer at the free surface, B → 0+, such that
V̂ = BV = O(1), in which, although the variation in temperature across the fluid film is small,
specifically T = 1 − Bhy + O(B2), thermoviscosity effects still enter the problem at leading order,
i.e. the variation in viscosity across the fluid film is still O(1). Note that in this limit the effective

thermoviscosity number, V̂ = BV , defined in terms of dimensional quantities by

V̂ =
λ(T0 − T∞)ǫaαth

µ0kth

, (A.1)
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and not the previously defined thermoviscosity number, V , is the appropriate non-dimensional
measure of thermoviscosity effects. In the particular case of the exponential viscosity model (4.1)
in this limit V ∼ V̂ h and so the leading-order expressions for µ, u, ψ and f are given simply by
(4.1), (4.3)–(4.5) with V replaced by V̂ h, respectively.

A.1 The Critical Solution

Unlike in the general case considered in Section 5, in the present distinguished limit explicit
expressions can be obtained for the critical film thickness at θ = 0, hc(0), the magnitude of the
slope of the corner in hc at θ = 0, Hc, and the critical flux, Qc, namely

hc(0) =
V̂ 2 + 2(WV̂ + 1)

2V̂
, (A.2)

Hc =

 

V̂ 4 + 4V̂ 2WV̂ + 4(WV̂ + 1)2

8V̂ (WV̂ + 1)

!1/2

(A.3)

and

Qc =
V̂ 2(V̂ 2 + 4) − 4(WV̂ + 1)2

4V̂ 3
, (A.4)

where WV̂ = WV̂ (V̂ ) is given by

WV̂ =

8

>

>

>

>

<

>

>

>

>

:

W0

 

− exp

"

− V̂ 2

2
− 1

#!

if V̂ > 0,

W−1

 

− exp

"

− V̂ 2

2
− 1

#!

if V̂ < 0,

(A.5)

where W0(x) and W−1(x) are again the principal and lower real branches of the Lambert W
function, respectively. Figure A shows the quantities hc(0), Hc, Qc and Mc plotted as functions of
V̂ .

In the limit of weak thermoviscosity, V̂ → 0, the solutions for hc, Hc, Mc and uc are given by the
corresponding results in the limit B → 0 given in Subsection 5.1, namely (5.5)–(5.8), with BV and
O(B2) replaced by V̂ and O(V̂ 2), respectively, and hence have the same physical interpretation.

In the limit of strong positive thermoviscosity, V̂ → ∞, the solutions for hc, Hc, Mc and uc are
given by

hc =
V̂

h

1 − (1 − cos θ)1/2
i

2 cos θ
+

1

V̂
+ O

„

1

V̂ 3

«

, (A.6)

Hc =
V̂

2
√

2
+ O

„

1

V̂ 3

«

, (A.7)

Mc = 2V̂ log(1 +
√

2) +
2π

V̂
+ O

„

1

V̂ 3

«

(A.8)

and

uc = 1 − 1

2

h

1 − (1 − cos θ)1/2
i

2

41 − exp

0

@−
V̂ 2

h

1 − (1 − cos θ)1/2
i

y

2 cos θ

1

A

3

5 + O

„

1

V̂ 2

«

. (A.9)

These solutions differ from the corresponding results in the limit V → ∞ given in Subsection 5.4,
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Fig. A The quantities hc(0) given by (A.2) (dash-dotted line), Hc given by (A.3) (dotted line),
Qc given by (A.4) (dashed line), and Mc (solid line) plotted as functions of V̂ .

namely (5.23)–(5.26), but have a qualitatively similar physical interpretation. In particular, these
solutions show that at leading order in the limit of strong positive thermoviscosity the viscosity

µ = O

2

4exp

0

@

V̂ 2
h

1 − (1 − cos θ)1/2
i

y

2 cos θ

1

A

3

5 (A.10)

is exponentially large outside a narrow boundary layer of width O(1/V̂ 2) ≪ 1 near the cylinder
y = 0, resulting in a uniform plug flow uc ≡ [1 + (1 − cos θ)1/2]/2 outside the boundary layer and
a large film thickness and load of O(V̂ ) ≫ 1.

In the limit of strong negative thermoviscosity, V̂ → −∞, the solutions for hc, Hc, Mc, and uc

are given by

hc =
1

(−V̂ )

"

log

 

V̂ 2

2

!

− WV ∞ − 1

#

+ O

 

log(−V̂ )2

V̂ 3

!

, (A.11)

Hc =
1

(−V̂ )
+ O

 

log(−V̂ )2

V̂ 3

!

, (A.12)

Mc =
1

(−V̂ )

"

2π log

 

V̂ 2

2

!

− CV ∞ − 2π

#

+ O

 

log(−V̂ )2

(−V̂ )3

!

(A.13)

and

uc = 1 − cos θ

V̂ 2
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− V̂ 2WV ∞

2 cos θ

!y ("

log

 

V̂ 2

2

!

− WV ∞

#

(1 − y) + y

)

− log

 

V̂ 2

2

!

+ WV ∞

#

+ O

 

log(−V̂ )2

V̂ 2

!

, (A.14)
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where the function WV ∞ = WV ∞(θ) and the constant CV ∞ are again given by (5.33) and (5.34),
respectively. At leading (but not higher) order these solutions coincide with the corresponding
results in the limit V → −∞ given in Subsection 5.5, namely (5.28)–(5.31), and hence have the
same physical interpretation.

A.2 Full-Film Solution with a Prescribed Load

In the limit of weak thermoviscosity, V̂ → 0, the solutions for h and u are given by the corresponding
results in the limit B → 0 given in Subsection 6.1, namely (6.1) and (6.2), with BV and O(B2)
replaced by V̂ and O(V̂ 2), respectively, and hence have the same physical interpretation.

In the limit of strong positive thermoviscosity, V̂ → ∞, the solutions for h and u are given by

h =
M

2π
+

M2 cos θ

4π2V̂
+ O

„

1

V̂ 2

«

(A.15)

and

u = 1 − M cos θ

2πV̂

"

1 − exp

 

−MV̂ y

2π

!#

+ O

„

1

V̂ 2

«

. (A.16)

These solutions are similar to the corresponding results in the limit V → ∞ given in Subsection
6.4, namely (6.14) and (6.15), from which they can be obtained by writing V = V̂ /B and taking
the limit B → 0, and hence have the same physical interpretation.

In the limit of small load, M → 0, the solutions for h and u are given by the corresponding
results in the limit M → 0 given in Subsection 6.5, namely (6.18) and (6.19), with BV replaced by
V̂ , and hence have the same physical interpretation.


