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Abstract

A variety of natural fibres are nowadays being utilized as soil reinforcement. Test results
demonstrate the positive effects of adding natural fibres to soils, in that they decrease
shrinkage, reduce curing time and enhance compressive, flexural and shear strength if an
optimum reinforcement ratio can be utilised. This paper describes a study which uses a
Scanning Electron Microscope (SEM) and an Energy Diffraction Analysis of X-rays (EDX)
technique on clay-based composites stabilized with natural polymer and fibres. Different
dosages of fibres and several types of soils have been used in this study with the aim of
determining advantageous properties for building material applications. SEM and EDX test
results reveal the degree of bonding between the particles of soil and the natural fibers. This
has enabled a better understanding of the micro-morphology of the natural fibers and their
effect on the overall composite material structure. Microscopic analysis was combined with
mechanical tests to establish the different strength characteristics of every soil.

1 Introduction

One of the most important characteristics of swelling soils, such as clays, is their
susceptibility to volume change due to swelling and shrinkage. These swell-shrink
movements and total and differential volume changes can result in considerable structural and
non-structural damage to overlying structures such as low-rise buildings, highways, roads and
buried pipelines and therefore it is important to find mechanisms that will improve the
stability of such soils. Natural fibres [1-3] are potentialy important by-products of mainly
plants or animals and can be used as reinforcement in eco-friendly composites suitable for the
building industry. These fibres have been tested as reinforcement in cement [4] and polymer
matrix composites [5-7] and comprise plant fibres such as jute, coir, sisal, bamboo, wood,
palm leaf, coconut leaf, coir dust, cotton, hemp, grass, etc. These fibres have also, to various
degrees, been used as a reinforcing material in order to improve the engineering properties of
a given soil. Current research is focusing on materials such as sisa [8], bamboo, jute, hemp,
coir and few other natural, plant-derived fibres. However, animal fibres have been relatively
neglected in the search for improving soil reinforcement properties. Wool fibres exhibit a
large surface area in relation to their bulk and these surface properties play a critical role in
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many wool applications such as felting, soiling and dyeing in its aesthetic appearance. This
property is also critical in their ability to form linkages with polymers such as in treatments
conduced to be shrink-resistant. An understanding of the chemical structure of the fibre
surface is therefore crucia in order to advance wool processing and finishing technology.

In this research project, a new approach has been applied to try to understand behavior in
relation to understanding the natural drying speed on the swelling behavior of natural
polymer-stabilized soils. Three types of soils all exhibiting different ranges in plasticity index
values and two different dosages of wool fibres were selected and have been analyzed.
Specimens were dried to their initial water content to evaluate partial shrinkage and the
relation of this change with different amounts of natural fiber. Microscopic structural changes
of stabilized specimens were studied with a Scanning Electron Microscope (SEM) and the
results from this analysis were compared with Energy Diffraction Analysis of X-rays (EDX).
In addition physical changes were compared with the plasticity index of each soil and the
results of mechanical testing on each sample.

2 Materials

2.1 Soil

Three different types of soils were used for the tests. Soils were al supplied by Scottish brick
manufacturers, namely Errol (from Perthshire), Ibstock (from Glasgow), and Raeburn (from
Glasgow). Alluvia soil from the Tay estuary (on the East Coast of Scotland) has been used
by Errol to manufacture unfired and fired bricks since 1850. Indeed, Errol bricks have been
made from estuarine clays laid down after the last Ice Age. Both Ibstock and Raeburn brick
manufacturers, based in Glasgow, have used soils sourced in the West of Scotland to
manufacture fired bricks. All three soils have a different colour, texture and particle sizes. Sail
samples were naturally dried and sieved before they were used in the mixes and the
composition was measured by chemica precipitation as illustrated in Table 1. A higher
content of Calcium and Magnesium Oxide was observed in Errol soil compared with two
other soil types.

Composition (%) Errol I bstock Raeburn

S0, 54.70 62.83 60.32

TiO, 0.97 0.98 0.96
Al,O; 19.70 18.49 18.30
Fe,0; 8.63 5.93 5.87

Ca0 0.93 0.38 0.32

MgO 3.55 1.86 1.81

K0 3.90 3.41 3.47

Na,0 1.78 0.38 0.45

P,0s 0.17 0.12 0.13
Cr,0; 0.02 0.01 0.01
MngO, 0.12 0.07 0.06
Zro, 0.03 0.05 0.05

ZnO 0.03 0.01 0.01

BaO 0.08 0.06 0.04
Lossat 1025 °C 5.04 5.57 5.53

Table 1. Chemical composition of three soils (samples dried at 110°C)

Clay, just like cement in concrete, acts as a binder for all larger particles within the soil. Silt
and sand constitute the filters as they are non-cohesive soils lacking in binding forces. Sail
nomenclature is based on which of the three soil types is dominant in the mix. For instance,
geotechnical literature describes clayey, silty and sandy soils as well as various combinations
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such as asilty clay. Errol soil is classified as a silty clay loam as it has a significantly higher
clay content than either an Ibstock or Raeburn soil. Ibstock soil is classified as a silt loam and
Raeburn soil is classified as a loam (Table 2). The plasticity of each soil type is defined by
Atterberg Limits. As can be seen below, the three soils showed a remarkable variation in their
index of plasticity (Table 2) with the drier Errol soil having a significantly higher plasticity
index.

Physical Characteristics Errol I bstock Raeburn

Sand Content 22.50% 27,50% 35,00%

Silt Content 45.00% 47.50% 40,00%

Clay Content 32.00% 25.00% 25.00%
Classification I.S.S.S. Silty clay loam Silt loam Loam
Liquid Limit 34.8% 25.9% 25.9%

Plastic Limit 19.1% 16.4% 16.8%
Plasticity Index 15.7% 9.5% 9.1%

Table 2. Physical characteristics, grain size and Atterberg Limits of the three soils

Clay soils exhibit quite large ranges in bearing capacity between approximately 75 and 300
KN/m? and their particle sizes are less than 0.002mm. In order to identify and quantify the
presence of different compounds of clays and phyllosilicates in each soil, the researchers
followed a standard protocol, set out in a Spanish Technical Regulation entitled
PNTO7LRX0044. The experiments were carried out in the CITIUS laboratory within the
University of Seville and the protocol determined the percentage composition of the small
[llite, Kaolinite and Chlorite grains using the oriented assembly method finding the
proportions described in Table 3 [9].

Soil Ilite Kaolinite Chlorite

Errol 50 38 12
Ibstock 36 64 traces
Raeburn 27 69 4

Table 3. Study of the fraction size <2um

2.2 Fibre

Natural fibres, acting as reinforcement within composites, offer many advantages including
good strength properties, low cost, low density, high toughness, good thermal properties,
biodegradability, non abrasive behaviour and widespread availability. However, herbal
containing cellulose fibers have several negative characteristics, such as an incompatibility
with the hydrophobic polymer matrix [10] and a tendency to show little resistance to
prolonged moisture. Finite natural lengths and large diameters also limit their potentia
applications. Most studies of natura fibres concentrate on cellulose-based/vegetal fibres
obtained from renewable plant resources such as wood, flax, sisal, or jute. There are very few
studies detailing composites made with protein (keratin) fibres. Natural protein fibres are
generaly obtained from anima hairs and animal secretions. Barone and Schmidt [11]
reported on the use of keratin feather fibre as short-fibre reinforcement within LDPE
composites. The keratin feather fibre they used had been obtained from chicken feather waste
which is generated by the USA poultry industry each year. Protein fibers generally have a
greater resistance to moisture and heat that natural cellulosic fibers and other vegeta fibers,
athough the proteins have little resistance to alkalis, which are resilient and a good elastic
recovery. Another natural protein fibre containing keratin is wool, which grows outwards
from the skin of sheep. Different species of sheep produce different types of wool with varied
fibre length, diameter and other differing physical characteristics. Generally, fine wool fibres

3
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are 40-127mm in length and 14 - 40y in width. They are roughly oval in cross-section and
grow in a wavy type of form which gives rise to a certain amount of twist. Wool fibres are
essentially composed of two types of cell: interna cells known as the cortex and external
cuticle cells that form a sheath around the fibre. The cuticle cells (or scales) overlap like tiles
on a roof and this characteristic makes wool unique amongst textile fibres. The complex
physical structure of cuticle cells is shown in Figure 1 and Figure 2 shows separation of
individual cortical cells in a fibre. The cortex component of the wool comprises
approximately 90% of the fibre and consists of overlapping spindle shaped cells known as
cortical cells, shown schematically in Figure 3.

Figure 1. SEM of wool fibre (x1200) Figure 2. SEM showing fibre fibrillation (x1050)

Curicle cells Cortical cells

Cell membrans complex

Figure 3. Schematic of awool fibre showing cuticle and cortical cells.

Wool isahygroscopic fiber taking up moisture in vapour form. Tiny pores in the cuticle make
the fibre semi-permeable, alowing vapor to pass through to the heart of the fiber which
means that wool can easily absorb up to 30% of its weight in moisture without feeling damp
or clammy. Thereis generally atwo-phase structure for wool fibers which consists of awater-
absorbing matrix which contains embedded within it non-water-absorbing cylinders. One of
the main objectives of using fibres as reinforcing elements within soil structuresis to prevent
cracking of the soil which results from shrinkage. Tensile shrinkage cracks in soil are mainly
due to rapid and non-uniform drying and reinforcing fibres within the soil structure prevent
cracking by adhesion or bonding to the soil particles. The main factors, which affect the
adhesion between the fibres and soil are: (@) the cohesive properties of the soil; (b) the
compression friction forces appearing on the surface of the reinforcing fibre due to shrinkage
of the soil and (c) the shear resistance of the soil, due to the surface form and roughness of the
fibres. The dimensional changes of natural fibres due to moisture and temperature variation
have an influence on all three of these adhesion characteristics. This is because during the
mixing and drying of the soil, the fibres absorb water and expand. This swelling of the fibres
pushes away the soil (at the microscopic level) and then at the end of the drying process, the
fibres lose the moisture and shrink back almost to their original dimensions leaving very fine
voids around themselves. [12-13]. This implies an increased level of porosity of the material
and the degree of friction loss fiber-soil.
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2.3 Alginate

Alginates are used in a wide range of applications, particularly in the food, industria and
pharmaceutical industries, because of their capacity to hold water, form gels, and form and
stabilize emulsions. One of the most important and useful properties of alginates is their
ability to form gels by reacting with calcium salts. Alginic acid, also called algin or aginate,
Is an anionic polysaccharide distributed widely in the cell walls of brown algae, where it,
through binding water, forms a viscous gum. In an extracted form it absorbs water quickly
and is capable of absorbing 200-300 times its own weight in water. Its colour ranges from
white to yellowish-brown and it is sold in filamentous, granular or powdered forms. The
chemical formula of the alginic acid is (CeHsOg)n; the two most common alginates being
sodium aginate (CgH,NaOg), and potassium alginate (CeH7KOg)n. Alginate gels, which
reproduce the characteristics of a solid when the jelification process concludes, retain its
shape and resist stress and are composed of water near 100% (typically 99.0 to 99.5% water
and 0.5 -1.0% alginate).Within the engineering and construction industries it has been
reported and patents have been approved to use aginates for in-situ stabilization of
contaminated and non-contaminated soils [14]. A few previous tests such as Friedemann et
Al. [15] and Galan et Al. [16-17], have been carried out incorporating aginate into building
materials.

3 Resultsand discussion

3.1 SEM-EDX analysis

The soils utilized in this study showed different plasticity indexes and different consistencies
in the mixture due to the relative water absorption of the three soils selected for SEM-EDX
analysis. Specimens from these soils were prepared in the two following dosages (Table 4).

Proportion Soil Alginate* Lignum** Wool Water
01_Soil 79.0% 19.5% 0.5% 0.50% 0.50%
02_Soil 79.5% 19.5% 0.5% 0.25% 0.25%

* Wet alginate.

** Lignum Sulfonate isaresin extracted from wood that was added as a dispersing agent (to improve the
workability of the soil).

Table 4. Proportions used (by weight).

The selected specimens were left to dry slowly at laboratory temperature for about two weeks.
Then, they were mechanically tested. Direct handling of the specimens was kept to a
minimum at all stages to avoid contamination (Figures 4-9).
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Figure 4-9. SEM pictures: (4) 01_Erral, (5) 02_Errol, (6) 01 _lIbstock, (7) 02_lbstock, (8) 01 _Raeburn and
(9) 02_Raeburn.

The EDX test confirmed, by a semi qualitative analysis, the chemical composition of soils and
also determined the high level of alginate microscopic dispersion in the samples analyzed,
(Figures 10-11), (Tables 5-6).

Element | Weight% Atomic% Compd% Formula
CK 0.00 0.00 0.00 CO2
NaK 167 154 225 Na20
Mg K 278 2.42 4.60 MgO
Al K 10.47 8.24 19.79 Al203
Si K 27.91 21.08 59.71 Sio2
KK 2.79 152 3.36 K20
CaK 157 0.83 2.20 CaOo
Ti K 0.83 0.37 1.39 Tio2
FeK 521 1.98 6.70 FeO

Full Scale 1689 cte Cursor: 0.000 ket ket O 46.77 62.02

Figure 10. EDX spectraof a sample (mainly soil) Table 5. Chemical composition of the sample.
Element | Weight% Atomic% Compd% Formula
CK 22.20 28.74 81.33 CO2
NaK 0.77 0.52 1.04 Na20
Mg K 0.43 0.28 0.72 MgO
AlK 1.78 1.02 335 Al203
S K 314 1.74 6.72 Sio2
SK 191 0.92 476 SO3
CIK 0.68 0.30 0.00
CaK 0.47 0.18 0.65 Ca0
FeK 0.58 0.16 0.74 FeO

Full Scale 1018 cte Cursor: 0.000 ket ket O 68.05 66.14

Figure 11. EDX spectra (soil and alginate particle) Table 6. Chemical composition of the sample.
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3.2 Mechanical test

Mechanical tests showed average values for the three-point bending tests and compressive
tests for all three soil types used in the production of test samples. Note that the same
procedure was repeated for all three soil types tested in our laboratory. Each value represents
the average of atotal of 7 (flexura test) and 14 (compression test) specimens. According to
the European Standards [18] the number of different mixes (proportions) tested were a
minimum of seven specimens per batch (Table 7)

Mix code 01 Sail 02_Sail
(0.50 % wool) (0.25 % wool)
Compressive strength (MPa)
Errol 4.37 4.44
Ibstock 3.43 3.59
Raeburn 2.69 3.75
Flexural strength (MPa)
Errol 1.08 1.45
I bstock 1.28 1.60
Raeburn 111 1.24

Table 7. Mechanical tests of the different mixes of the three types of soils.

3.3 Influence of the Atterberg Limits and the fibre absorption

In the manufacturing process a different consistency and workability was observed, which
was much drier for Errol mixes. This was due to the ability to introduce water inside the
crystalline structure. The consequences of the drier consistency can be observed within the
mechanical properties, showing Errol specimens, of any proportion, providing a much higher
resistance in compression test than other soils. The water available for the fibre absorption
was in direct relation to the plasticity index of each soil due to the soil absorption. That
explains why SEM pictures show higher shrinkage around the fibers in the samples made with
Ibstock and Raeburn soils.

3 Conclusions

This paper reviews the influence of the water absorption of wool fibres randomly distributed
in different types of soil. On the basis of mechanical testing, microscopic analysis and normal
geotechnical experimental measurements presented in this paper, it is clear that only
compressive strength of fibre reinforced soil increases for soils of higher plasticity index. This
is due not only to the fibre content itself but also because of the water absorption of the fibers
themselves.

Fibre water adsorption and soil-fibre surface friction, due to the drying shrinkage of a fibre,
depends on the available water and this in turn depends on the characteristics of the soil
plasticity. A greater amount of freely available water in the mixture reduces strength,
especially with regard to compression strength, but not so much for flexura strength. This
reduced compressive strength is basically due to the higher porosity of the mix and not due to
the interaction between the soil fibre. For all three types of soils tested the effectiveness of the
fiber reinforcement is shown not only for shrinkage reduction but also because of better
flexural results. These benefits are independent of the plasticity index of the soil itself. SEM
images of Raeburn and Ibstock specimens show a bigger space around the fiber due to
shrinkage. Wool fibres show a better behavior than other vegetal fibres due not only to the
texture of the fibre surface but also to the slow process of absorption and desorption of vapour
water.
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The changes in this soil-fibre surface interface are clearly visible in the SEM pictures. A
higher fibre proportion makes it more difficult to compact the samples and that has a clear
influence in the mechanical results both for flexural and compressive strength. The SEM-
EDX tests were useful in determining the degree of alginate micro-dispersion. In most of the
samples analyzed, it was really difficult to locate alginate particles within the soil matrix
which show that the alginate had achieved good levels of integration into the soil mass.
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