Biochemical Network Matching and Composition

Martin Hugh Goodfellow
Advisors: John Wilson and Ela Hunt
University of Strathclyde
26 Richmond Street
Glasgow, Scotland
martin.goodfellow@cis.strath.ac.uk

ABSTRACT

Graph composition has applications in a variety of practical
applications. In drug development, for instance, in order
to understand possible drug interactions, one has to merge
known networks and examine topological variants arising
from such composition. Similarly, the design of sensor nets
may use existing network infrastructures, and the superposi-
ton of one network on another can help with network design
and optimisation. The problem of network composition has
not received much attention in algorithm and database re-
search. Here, we work with biological networks encoded in
Systems Biology Markup Language (SBML), based on XML
syntax. We focus on XML merging and examine the algo-
rithmic and performance challenges we encountered in our
work and the possible solutions to the graph merge prob-
lem. We show that our XML graph merge solution performs
well in practice and improves on the existing toolsets. This
leads us into future work directions and the plan of research
which will aim to implement graph merging primitives in a
database engine.

1. INTRODUCTION

Graphs are of growing importance in our world, in politics,
academia and in industry. They allow powerful abstractions
of interactions occurring in the global economy, scientific
models of nature and society, and of systems composed of
engineered and natural components. As these graphs are
generally dynamic they will continuously increase and de-
crease in size. To effectively model these networks, using a
graph representation, methods for composition are required.

Power engineering, environmental sensor networks, drug
target discovery, policy development, web security, traffic
modelling and health applications, are just a few applica-
tion areas. The resulting graphs can be very large and need
efficient handling. To this aim we propose to work on al-
gorithmic and indexing techniques in network modelling so
that large networks become tractable.

We focus on biochemical networks. As network represen-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EDBT 2010, March 22-26, 2010, Lausanne, Switzerland.

Copyright 2010 ACM 978-1-60558-990-9/10/0003 ...$10.00.

)) &)
Codm der d

(a) (b) (c)

Figure 1: Merging two identical models (A — B <
C):a+b=c

tations in XML are available (in SBML, see
www.ebi.ac.uk/biomodels-main/), they provide an excellent
training ground for the development of new algorithms and
database methods for network reorganisation. A biochem-
ical network consists of chemical reactions between species
(reactants and products), and is enacted in a living organ-
ism. A simple network is shown in Figure 1(a). This network
contains three chemical species, A, B and C, three reactions,
A — B, B — C and C — B, and three rate constants, k1,
k2 and k3, which define the speed of the reactions. The
main motivation behind composition is to support the en-
gineering of biochemical networks by allowing them to be
easily designed, analysed, and modified.

There are several different types of biochemical networks
or pathways, including transcription, signal transduction and
metabolic pathways. Biochemical network models can be
rule-based, Petri nets, XML based or expressed as systems
of equations. Models are used for simulation, analysis and
drug target prediction. They are simulated in order to de-
termine how a biochemical network will behave over a given
time interval. Additionally, models can be analysed to dis-
cover interesting behaviour(s) they exhibit. They can also be
used to predict the effect of drugs on the biochemical net-
work they represent. This enables researchers to estimate
the effectiveness of a drug developed for a specific purpose.
It also allows drugs to be tested in silico without the need
for human or animal test subjects.

Model composition is of high importance. Many biochem-
ical network specifications are made up entirely or partly of
existing network models. Some modellers manually merge
existing models when building new models, which is time
consuming, frustrating and error prone. Composition also
allows models to be created from libraries or databases of
standard parts. Additionally, composition can be used as
the first step in automatically varying topologies to perform
model identification. In formal terms, this involves finding
a model which fits specific data. Finally, composition can
also be used for merging models of pathways which interact,

5%
o£e

Figure 2: Merging two different models (A — B — C
and D — E): a+b=c

Figure 3: Merging models with shared reac-
tions/species (A - B «—~ C — D and A — B — C):
a+b=c

where interact means they have shared entities or species.

SBML models (see www.systems-biology.org) can be cre-
ated and simulated using interactive tools, including CellDe-
signer (celldesigner.org), and visualised using packages such
as Cytoscape (www.cytoscape.org). An existing package for
model merging, semanticSBML, sysbio.molgen.mpg.de/se-
manticsbml, allows for interactive model merging but re-
quires a very significant amount of user interaction, which
makes it unsuitable for automated integration of pathways.
To remedy this shortcoming, and enable automated merge
for large scale models we developed SBMLCompose which
performs unsupervised model composition.

Our CONTRIBUTIONS are as follows. We designed and im-
plemented SBMLCompose which performs automated model
merging. This solves some problems of XML graph merg-
ing and of math expression comparison, synonymy, and unit
conversion which are parts of the problem space. We bench-
marked the performance of SBMLCompose against seman-
ticSBML and show that SBMLCompose is an order of mag-
nitude faster. We propose new research directions which will
enable automated composition of large models in the future
and support large-scale model merging.

The remainder of this paper is structured as follows. Sec-
tion 2 explains our notation and summarises related work.
Section 3 describes SBMLCompose and Section 4 presents
results which show that our method is faster than seman-
ticSBML. Finally, in Section 5 we resent future directions
and conclusions.

2. PRELIMINARIES

Three examples of network merging are shown in Fig-
ures 1, 2, and 3. Intuitively, where models are identical,
the result is the same as either of the models. When mod-
els share a node, two identical nodes are merged into one,
and when models share an edge with its two adjacent nodes,
those two identical nodes and the edge are merged. Match-

ing here is different from matching as defined in graph the-
ory. Matching here is defined as a matching of both edges
and nodes. I define composition and decomposition as fol-
lows:

A graph G is denoted as (V, E, L, ¢,1), where V is the set
of nodes, E C V x V is the set of (directed or undirected)
edges and L is a set of labels, i.e. identifiers or math expres-
sions. Labels are specified by mappings ¢ : V — X1 and
P E— Xr. Let Gi and G2 be two graphs. Graph compo-
sition is the union of the graphs, G1 U G2 with (potentially)
shared nodes or shared nodes and unitable edges. Node and
edge comparison is based on the comparison of labels. Two
nodes nl ¢ G1 and n2 € G2 are equal iff their labels are
identical or synonymous, i.e. ¢(nl) &~ ¢(n2). Two edges are
equivalent iff their labels can be united via an arithmetic op-
eration, i.e. ¥((nl,n2))eG1 is unitable with 1((n3,n4))eGs.
The rules for edge comparison and unification follow the laws
of chemistry, as explained later.

Graph composition is currently a relatively untouched re-
search area. Previous work includes determining how many
different compositions will produce the given graph [15, 11,
3] and finding the optimal topology for an automata net-
work by artificial evolution [17], which requires the use of
composition methods. However, these methods are specific
to automata and not directly usable in our work. Work has
also been performed on composition of perfect graphs [6].

Biochemical network composition is a relatively untouched
area. However, composition exists in other, related contexts.
We discuss here textual composition and XML composition.
The simplest form of composition is TEXTUAL COMPOSITION,
such as performed by the Unix utilities diff and patch. Diff
finds the differences between two text files and patch uses
those to compose the files. This composition is automated.
Alternatively, sdiff can be used to interactively perform the
composition of two text files. Files are equal if all lines are
equal. Patch assigns the first file to be the composed file and
makes the changes within it to make it match the other file.
Sdiff behaves similarly but the user chooses what changes
are accepted. Diff uses the Longest Common Subsequence
(LCS) algorithm [18, 19]. LCS solutions include the use of
indexes, such as persistent suffix trees, or online solutions
via the Smith-Waterman algorithm [21] used in computa-
tional biology and plagiarism detection [13]. Global and lo-
cal alignment in biology correspond to linear text merging.
Textual comparison is also widely used in version control,
collaborative editing [12] and the comparison of and updat-
ing of documents and software.

XML COMPOSITION is more complex as it must take ac-
count of the XML structure, which corresponds to the tree
to tree correction problem [22]. This is similar to the string
to string correction problem [24] and involves calculating the
minimum number of edits between two trees where the edits
are replacing a node with another node, removing a node
and inserting a node. This can be solved in two ways, us-
ing ordered or unordered tree model algorithms, see [7] and
[25]. Available tools in this area include DeltaXML [27] and
xmldiff [28].

Tree edit problem and composition arise also in software
engineering and can be solved using a version of the LCS
algorithm which is similar but not identical to the one used
in diff. Tree based comparisons of programs have been pro-
posed in [16] and are similar to XML tree comparison.

The most relevant applied work in model composition

is SBMLMerge, part of semanticSBML. The composition
method first annotates the elements in the model with iden-
tifiers from biological model databases to allow the meaning
of each element to be known. This involves database lookups
which are slow and do not scale up. The next stage involves
checking the semantic validity of the models to be composed,
to ensure only valid models are merged. Finally, the models
are merged to create the composed model. SBMLmerge first
partitions the attributes of each SBML component into iden-
tifying attributes and describing attributes. It then com-
bines all the components from each model into one model
and parses this new model to remove all identical/conflicting
components. Components are identified as identical if the
identifying attributes are the same as well as all the de-
scribing attributes, otherwise they are different. Compo-
nents are identified as conflicting if the inclusion of both of
them goes against the semantic rules of SBML. However, se-
manticSBML has some disadvantages as it only works with
SBML models from certain databases and not with any de-
sired model. It doesn’t annotate models automatically, as it
requires user interaction. Once the annotations have been
added, the composition is still not automated, as for exam-
ple, the software cannot determine if the maths of initial
assignments are equal. Users have to decide what initial as-
signment is included in the model, should two exist for the
same entity. Additionally, should a group of modelers be
creating a large new model for which not all of the elements
have been defined, it is not possible for the model to be built
incrementally. Finally, several passes over the source XML
are required, which is inefficient.

3. SBMLCOMPOSE

Our new method, SBMLCompose, performs composition
of biochemical networks.

We applied textual XML merging to SBML models which
consist of various types of components, such as function def-
initions, unit definitions, species types, units, reactions, and
others. Our algorithm checks each component type to see
if two different components are identical. Depending on the
component type, this check varies from relatively simple to
quite complex. For example, for each pair of species compo-
nents the names and identifiers were checked to see if they
were identical or synonymous. The comparison algorithm
is shown in Figures 4 and 5. The algorithm in Figure 4
details the execution of the complete composition process.
Figure 5 shows the generic merge algorithm that is called
at each stage of the algorithm in Figure 4. The merge al-
gorithm varies for each element with respect to both the
equality and composition step.

Currently the indexing structure mentioned in line 5 is a
hash map. A hash map exists for each component contained
in an SBML model. These indexes use a string as the key.
The string used is determined by the SBML components the
index is utilised for. In the majority of cases this is the ID
or the name, if this is available. This index structure will be
the subject of future research. We hope to determine which
is the best index for this scenario and other XML-based
graphs.

One of the challenges here is the existence of arbitrary
names and synonymy. To overcome this, we use synonym
tables and the users who create models are informed that
biological entities must be given names expressing biologi-
cal meaning. Identical components are identified via vari-

Data: Two model objects to be composed
Result: The composed model object
Compose Function Definitions;
Compose Unit Definitions;

Compose Compartment Types;
Compose Species Types;

Compose Compartments;

Compose Species;

Compose Parameters;

Compose Rules;

Compose Contraints;

Compose Reactions;

Compose Events;

12 return composed model

© 0O A WN -

o=
= O

Figure 4: Model composition algorithm

input : Two SBML models
output: The composed model

1 if one SBML model empty then
2 ‘ return the non-empty model
3 else if both models are non empty then
4 for each SBML component S2 in second model do
5 S1 = Look for SBML component S2 in index of
first model;
6 if 52 /= null then
7 duplicate(S1,52):= true;
8 check for conflicts;
9 end
10 if !/duplicate then
11 if S2 = 51 then
12 S2:= S1 (rename);
13 add mapping;
14 end
15 check for conflicts;
16 add S2 and its data to first model;
17 else
18 if S1id != S2 id then
19 ‘ add mapping;
20 end
21 duplicate(S1,52):= false;
22 end
23 end
24 end

25 return First SBML model

Figure 5: Component Merge Algorithm

ous methods. If the component is named, its name or id is
checked for equality. All parameters in the original models
have to be included in the composed model, as there is no
way of confirming whether they are intended to be equal or
not. However, if two parameters have the same name, then
one is renamed to avoid conflicts. For all other components,
we compare the underlying information, which is the maths
in all other cases except for unit definitions. Unit definitions
are compared by checking the list of known units. As iden-
tical components often have different names, mappings are
stored to reduce comparison time, for example, if the kinetic
law of a reaction was shared by two models, we stored its

Zeroth order: 0 — X
First order: X —7?
Second order: X +Y —7

Here, na denotes Avogadro’s constant - the number of
molecules in one mole of a substance - ng = 6.022)(1023;
Ms™! is molecules per second; and k is the reaction rate
constant.

Zeroth order: the number of moles is kMs™!, so for a
volume V, X is produced at a rate of nakV molecules/s.
The number of molecules is ¢/s ¢ = nakV.

First order: the number of moles is k[X]Ms™'. As this
involves [X], we need to know that for a volume V, a
concentration of [X] corresponds to = na[X]V molecules.
Since X decreases at rate nak[X]V = kz molecules/s, the
number of molecules is cz/s ¢ = k.

Second order: the number of moles is k[X][Y]Ms™".
Here, for a volume V, the reaction proceeds at a rate of
nak[X][Y]V = kxzy/naV molecules/s. The number of
molecules is cxy/s ¢ =

naV:

Figure 6: Converting moles into molecules [26]

mapping for future use.

Another challenge is how to handle inconsistencies/
conflicts between identical components. The default is to
issue a warning when a conflict is discovered. The software
then includes the first component in the model and writes
a warning to a log file informing the user of this and of
decisions taken. A significant problem encountered during
conflict checking was that values in different models may be
defined using different units. The equations used for the con-
version of units in the species defining the model are shown
in Figure 6. Similarly to unit conversions, conflicts in rate
constants and stochiometry within reactions are resolved.

The most complex problem we offer a novel solution for
was determining if the maths functions, equations and as-
signments within the models were equivalent. All maths
within a model is described using MathML [2]. However,
equations and assignments, even if they are not identical,
may be equivalent, due to commutativity. Our solution in-
volves pattern matching. The first algorithm is shown in
Figure 7. The algorithm extracts a MathML pattern. This
pattern takes commutative operators into account so that
it will match commutative maths functions, equations or
assignments, regardless of the order of the operands. The
pattern is then used to determine if the component contain-
ing maths is unique in the context of all the models. The
maths is extracted by an algorithm which mirrors the one
shown in Figure 7 (not shown).

The kinetic law within a reaction can be expressed in two
ways, either as mass action - see Figures 10 and 11 - or
Michaelis-Menten kinetics - see Figure 12. To automate the
processing of both description types, the formulae are com-
pared using the algorithms just described. Additionally, the
reactants, modifiers and products are checked for equality.

The final problem encountered was checking that the ini-
tial values of component attributes were the same. These
values can be set in different places in the model, within

getMaths(N, M, P)

input : current math node N; the maths string M;
prefix P of current math node N

output: The maths

Data: Node (string value of a node)

Data: K: Number of children (in N)

1 if K > 0 then
2 Node = string value of current math tree node
(after applying mappings) ;
3 M:= M + P + Node ;
4 if N is a commutative operator then
5 for each child C of N do
6 | M = getMaths(C, M, *”)
7 end
8 end
9 else
10 for each child C of N do
11 | M = getMaths(C, M, (C + child number))
12 end
13 end
14 else
15 Node = string value of current math tree node
(after applying mappings) ;
16 M:=M + P 4 Node ;
17 Convert M to maths pattern ;
18 add pattern to the list of maths patterns ;

19 end
20 return The maths string M

Figure 7: Get Maths Patterns Algorithm

Mass Action Kinetics of Mass Action Kinetics of
reaction = -k1[A] reaction = -k2[B]

Figure 10: Mass Action Example 1

® + O—©0 O==C

Mass Action Kinetics of
reaction = ki[A] — k2[B]

Mass Action Kinetics of
reaction = -k1[A][B]

Figure 11: Mass Action Example 2

an initial assignment component and in the definition of the
component itself. To solve this, the initial values of all com-
ponent attributes are collected before composition begins.
If a component has an initial assignment, it is extracted and
evaluated and the value is saved. The maths is extracted as
previously described. The initial values are then used in the
check for conflicts during model composition.

Composition Times

5 N, . PO N o . S e

Gomposition Time (g10{milisaconds)

Model1 {Size =0}
Model3 (size

Mol (in ascending order of size [siz = nodes + edges])

Figure 8: The logio(time in ms) required to compose each model with every other model in order of size (size
= nodes + edges) using our method, SBMLCompose

Timing Comparison of semanticSBWVWIL and
SBNVILCompose

- |

s 1 semanticSBML

Compaition Time |l §0 [milkseconsds]]
N

- - -l- - - - - S -

i ATl e i e aﬂ-“',;:" g
_}ﬁ*#*d&*:@ﬁ*#*# ﬁ #Efﬁfﬁfﬁﬁf

Pacdel {in ascending order of size [ize = nodes + sdges])

15“-'6“\-"."1'{‘\"-'\"{\ g, s,
._,_

i

Figure 9: logio(composition time in ms) for semanticSBML and SBMLCompose for each model with every
other model in ascending order of size

- __ A _ Vinas
V - Vmuz (KM + [A])7 kcat [ET]
dlA] _ d[B] _ [A]
gt =~ ar FealPr] (K + [A])

V: Reaction velocity

K Michaelis constant - concentration of substrate at
which reaction rate is half max value

[ET]: Total enzyme concentration

Figure 12: Michaelis-Menten equations

4. RESULTS

SBMLCompose was developed in Java 1.6. Beanshell [4]
was utilised to allow Java maths strings to be executed
as code. The software performance was tested on Linux
kubunto version 2.6 with 1GB RAM on a 2.60GHz Intel
Pentium 4 CPU.

The models were sourced from the BioModels database -
187 models. Model size ranged from 0 to 194 nodes and 0
to 313 edges. Each of the models was composed with ev-
ery other model using our method, SBMLCompose, and the
composition time recorded. Each composition involved only
two models and the composition testing proceeded as fol-
lows: the smallest model was composed with the smallest
model, the smallest model was composed with the second
smallest model, ... , the largest model was composed with
the second largest model, the largest model was composed
with the largest model. The results are summarised in Fig-
ure 8. Composition has O(nm) time complexity for two
models of sizes n and m.

Only 17 test models which can be fully parsed are provided
with semanticSBML, with all models already annotated bi-
ologically and requiring a local database lookup. The size
of these models ranges from 4 to 7 nodes and 0 to 3 edges.
Each of these models was composed with every other model
in the collection and the composition time recorded for both
semanticSBML and SBMLCompose. The composition was
performed the same way as the previous experiment. The
results of this experiment are shown in Figure 9. SBML-
Compose is at least an order of magnitude faster than se-
manticSBML, and this is visible even for small models. The
complexity of semanticSBML is O(mn), with several passes
over the data. One possible reason for SBMLCompose’s
better performance is that for each run of semanticSBML,
a local database is loaded consisting of 54,929 entries from
Gene Ontology [1], KEGG Compound [14], ChEBI [8], Pub-
Chem (pubchem.ncbi.nlm.nih.gov), 3SDMET (www.3dmet.-
dna.affrc.go.jp) and CAS (www.cas.org). During the com-
position process this database is consulted to resolve simi-
larities/dissimilarities by identifying the components within
it and assigning to them the unique id, for that component,
contained within the database. In contrast, SBMLCompose
does not require any database accesses to perform compo-
sition, as it uses local synonym tables instead. All equality
methods are based on the structure of the SBML. Our syn-
onym tables are smaller and contain only the entries required
for the composition. This also ensures that new biological
entities can be added to support composition, as needed.

4.1 Evaluation of Test Results

Evaluation involved pairwise comparison, comparing the
merged model with the expected model, and checking qual-
ity by eye. The methods used for comparison are discussed
in the following sections.

4.1.1 Textual Comparison of SBML

A simple but tedious method involved the textual com-
parison of SBML by examining the resulting SBML model
and the expected SBML model. This was performed manu-
ally as available XML differencing utilities treated the order
of XML components as either important or unimportant.
However for SBML the order of components is relevant in
some cases but irrelevant in others. This comparison was
feasible for small models. However, this would be impracti-
cal for larger models as some had in excess of 400 lines of
SBML. Thus, textual comparison was used when practical.
Therefore other forms of evaluation were required.

4.1.2 Visual Comparison of Simulations

The simplest method of evaluating test results was the
visual comparison of simulations. This involved simulating
the expected output and the actual output. The graphs of
these simulations were then compared to confirm correct-
ness. This method was however crude and inaccurate. Sim-
ilar simulation graphs are not always identical. Subtle differ-
ences between concentrations of species or behaviour could
go unnoticed. Therefore, more precise forms of evaluation
were required, as described further.

4.1.3 Pairwise Comparison of Traces using Residual
Sum of Squares

Residual sum of squares over simulation times was also
used, as follows. A file of time series data of concentrations
for various species was generated. This was then used to
calculate the sum of squares between identical species from
the two models. The results were used to determine if the
models were equivalent - the sum of squares is close to 0 for
all identical species.

4.1.4 Model Checking of Properties

The output of the composed model that the software pro-
duced was also checked for correctness using a model checker
which examined specific model properties, expressed using
temporal logic. We then used the Monte Carlo Model Checker
(MC2) [9].

5. FUTURE WORK AND CONCLUSIONS

This preliminary investigation leads us to several future
directions. A generic graph composition method would be
preferable but is it possible to perform efficient and correct
composition without semantics? We plan on reducing the
semantic reliability of the current SBML method to only re-
quire light semantics as opposed to heavy semantics as is
currently used. This would allow us to compare the perfor-
mance and determine how reliant composition is on seman-
tics. This comparison can be further extended by creating
a generic method that requires no semantics and comparing
it with both the SBML composition method for light and
heavy semantics.

Our work plan includes the following types of investiga-
tion:

1. Optimising access to locally cached copies of synonym
databases

2. Defining a method for XML graph decomposition or
splitting

3. Development of new indexing techniques to support
network merging and splitting

4. Development of indexes to support zooming in and
out of networks and their subparts (indexing and al-
gorithms for semantic graph zooming)

5. New formalisms and notations for graph merging and
splitting

6. Algorithmic optimisation of graph operations

7. Complexity reduction by using a suffix tree [10] or a
hash table, down to O(m + n), as graph nodes can be
indexed while being parsed, and looked up via hash
table or suffix tree lookup.

8. Design of graph encodings for other application areas

This exploration opens up a new research area on the
boundary of algorithms, databases and bioinformatics. It
parallels ongoing work in XML Schema integration [20] and
in subgraph identification [23]. A recent database approach
in this area involves the work on path matching [5]. We have
demonstrated a new approach to graph merging, which uses
XML formatted graphs and performs a textual merge. This
method, despite being tested with SBML, demonstrates a
generic framework for the composition of annotated graphs.
The performance of our method appears to be better than
the performance of a similar existing package and these pre-
liminary results require further study. What is also novel
is that we solve the problem of math composition, which
appears to be new in this context.

Part of the development of SBMLCompose took place in the
Glasgow Bioinformatics Research Centre led by D. Gilbert,
and was part of MG’s Honours project. MG is funded by
the EPSRC. EH is now at the ETH Zurich.

6. REFERENCES

[1] M. Ashburner et al. Gene Ontology: Tool for the
Unification of Biology. Nature Genetics, 25(1):25-29,
May 2000.

[2] R. Ausbrooks et al. Mathematical Markup Language
(MathML) v. 2.0. October 2003.
http://www.w3.org/TR/MathML2/.

[3] W. Bajguz. Graph and Union of Graphs Compositions,
Jan. 31 2006. http://arxiv.org/abs/math/0601755.

[4] BeanShell - Lightweight Scripting for Java.
http://www.beanshell.org/.

[5] P. Bouros et al. Evaluating reachability queries over
path collections. In SSDBM, pages 398-416, 2009.

[6] W. H. C. C. Cornuejols. Compositions for Perfect
Graphs. Discrete Mathematics, 55:245-254, 1985.

[7] S. S. Chawathe. Comparing Hierarchical Data in
External Memory. VLDB, pages 90-101, 1999.

[8] K. Degtyarenko et al. ChEBI: A Database and
Ontology for Chemical Entities of Biological Interest.
Nucleic Acids Research, 36(Database-Issue):344-350,
2008.

[9] R. Donaldson and D. Gilbert. A Model Checking
Approach to the Parameter Estimation of Biochemical
Pathways, CMSB. LNCS, 5307:269-287, 2008.

[10] E. Hunt et al. A Database Index to Large Biological
Sequences. In VLDB, pages 139-48, 2001.

[11] A. Huq. Compositions of Graphs Revisited. Electr. J.
Comb., 14(1), 2007.

[12] C.-L. Ignat and M. C. Norrie. Flexible Collaboration
over XML Documents. In CDVE, pages 267-274, 2006.

[13] R. Irving. Plagiarism and Collusion Detection using
the Smith-Waterman Algorithm. Technical report,
University of Glasgow, Department of Computing
Science, 2004.
http://www.dcs.gla.ac.uk/publications/PAPERS /7444-
/TR-~2004-164.pdf.

[14] M. Kanehisa and S. Goto. KEGG: Kyoto
Encyclopedia of Genes and Genomes. Nucleic Acids
Res., 28:29-34, 2000.

[15] A. Knopfmacher and M. E. Mays. Graph
Compositions I: Basic Enumeration, Feb. 11 2003.
http://citeseer.ist.psu.edu/564967.html.

[16] L. Lian et al. Development of Program Difference Tool
based on Tree Mapping. IEICE Trans. Inf. and
Systems, 78(10):1261-1268, 1995.

[17) M. H. Luerssen and D. M. W. Powers. Graph
Composition in a Graph Grammar-Based Method for
Automata Network Evolution. In IEEE Congress on
Evolutionary Computation, pages 1653—1660, 2005.

[18] W. Miller and E. W. Myers. A File Comparison
Program. Software - Practice and Experience,
15(11):1025-1040, 1985.

[19] E. Myers. An 0(nd) Difference Algorithm and its
Variations. Algorithmica, 1(2):251-266, 1986.

[20] K. Saleem et al. PORSCHE: Performance ORiented
SCHEma mediation. Inf. Syst., 33(7-8):637-657, 2008.

[21] T. F. Smith and M. S. Waterman. Identification of
Common Molecular Sub-Sequences. Journal of
Molecular Biology, 147:195-197, 1981.

[22] K.-C. Tai. The Tree-to-Tree Correction Problem. J.
ACM, 26(3):422-433, 1979.

[23] Y. Tian and J. M. Patel. TALE: A Tool for
Approximate Large Graph Matching. In ICDE, pages
963-72. IEEE, 2008.

[24] R. A. Wagner and M. J. Fischer. The String-to-String
Correction Problem. J. ACM, 21(1):168-173, 1974.

[25] Y. Wang et al. X-Diff: An Effective Change Detection
Algorithm for XML Documents. In ICDE, pages
519-530, 2003.

[26] D. J. Wilkinson. Stochastic Modelling for Systems
Biology. Chapman & Hall, 2006.

[27] DeltaXML. http://www.deltaxml.com/.

[28] xmldiff. www.logilab.org/859.

