Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Designs for the complementary use of system dynamics and discrete-event simulation

Morgan, J. and Howick, S. and Belton, V. (2011) Designs for the complementary use of system dynamics and discrete-event simulation. In: Proceedings of the 2011 Winter Simulation Conference (WSC). Winter Simulation Conference Proceedings . IEEE, New York, pp. 2710-2722. ISBN 9781457721090

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Discrete-Event Simulation (DES) and System Dynamics (SD) are popular modeling approaches that have been successfully applied in a wide range of situations for various purposes. The two approaches can be viewed as complementary, and show potential for combination. Examining multimethodology literature allows us to develop a modeling framework that considers possible designs for such a combination. The aim of this paper is to apply, reflect on and develop this framework through an intervention that lends itself to both approaches, and to explore how DES and SD can be combined in practice. Models under development with a radiotherapy center to explore the impact of altering patient treatment regimes in response to the adoption of new, more complex, technology are discussed. The potential to combine DES and SD in a way which is both complementary and synergistic is explored, and this paper reflects on the experience to date with regard to the proposed methodology.