Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Information-gap robustness of a neural network regression model

Pierce, S.G. and Worden, K. and Manson, G. (2004) Information-gap robustness of a neural network regression model. In: 22nd IMAC Conference and Exposition 2004 (IMAC XXII): A Conference and Exposition on Structural Dynamics. Curran Associates, Inc., pp. 1068-1076. ISBN 9781604238020

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

As a result of their black-box nature, neural networks resist traditional methods of certification and therefore cannot be used in safety critical applications. This situation is undesirable as neural networks can provide an effective solution to many engineering problems. The object of the current paper is to explore the possibility of quantifying and qualifying the reliability of neural networks by a means outside the traditional framework. The approach used here will follow Ben-Haim’s information-gap theory of uncertainty. This is a non-probabilistic approach which may lend itself well to certification of black-box systems. The approach is demonstrated here on a neural network regression model of the process of pre-sliding friction between solids.