
e

. R
thc

hig
ing
tic
ffe
ls
ta
ing
As

cti
t

nd
e-
es
nc
en
pe
e d

.com
Theoretical Population Biology 56, 279�292 (1999)

The Characteristics of Epid
Invasions with Thresholds

Isla Cruickshank, William S. C. Gurney,1 and A
Department of Statistics and Modelling Science, University of Stra
Scotland, United Kingdom

Received April 7, 1998

In this paper we report the development of a
ing the principal characteristics (velocity, lead
sions or epidemics described by determinis
whose dynamics include a threshold or Allee e
the correct results for single-component mode
and then demonstrate by numerical experimen
class of epidemic and invasion models includ
Rosenzweig�McArthur predator�prey model.
consider the atto�fox effect in the classic rea
fox population and show that the appropriate
magnitude of the peak disease incidence a
epidemic properties. We then make a careful r
the velocities calculated with realistic thr
calculated from threshold-free models. We co
tion�diffusion model provides a robust repres
provides a sound basis on which to begin a pro
understanding the long-term persistence of th

1. INTRODUCTION

The spatial spread of newly introduced species or dis-
eases is a subject of continuing interest to both
theoreticians and empiricists. One strand of theoretical
developments (e.g., Skellam, 1951; Kendall, 1965;
Mollison, 1972; Murray, 1989) built on the pioneering
work of Fisher (1937), who used a logistic-based reac-
tion�diffusion model to investigate the spread of an
advantageous gene in a spatially extended population.
With initial conditions corresponding to a spatially
localised introduction, such models predict the eventual
establishment of a well-defined invasion front which
divides the invaded and uninvaded regions and moves
into the uninvaded region with constant velocity.
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Provided that very small populations grow in the same
way as finite ones, the velocity at which an invasion front
moves is set by the rate of divergence from the (unstable)
invader-free state, and can thus be determined by linear
methods (e.g., Murray, 1989). These techniques have
been refined by Thieme (1979), van den Bosch et al.
(1990), and Kot et al. (1996), who used a closely related
renewal equation formalism to facilitate the inclusion of
latent periods and more general and realistic transport
models. All the analytic work and most of the simula-
tions reported in these papers depend on the assumption
that the invaders do not exhibit any special dynamics at
very low densities. Where this assumption is not justified,
for example when there is an Allee effect (Allee, 1931) the
wave speed is determined by the flux of individuals into
the region of negative growth ahead of the main front.
Although numerical work (e.g., Kot et al., 1996) has
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shown that such effects always slow down the front
relative to the threshold-free case, analytic treatment of
this intrinsically non-linear class of problems has proved
elusive, the only counter-example being Lewis and
Kareiva's (1993) treatment of a one-component system
with cubic growth dynamics.

Despite their popularity, deterministic representations
of the spatial dynamics of invasions and epidemics which
assume that finite and infinitesimal populations have
indistinguishable dynamics, suffer from a generic dif-
ficulty first identified by Mollison (1972, 1991). Far
behind the invasion or epidemic front, most epidemic
models settle to a spatially homogeneous equilibrium
state in which all the players co-exist at finite abun-
dances. In many cases, however, the passage from the
epidemic front to co-existence passes through conditions
where the local abundances of some or all of the players
drops to truly microscopic levels. Worse, local rekindling
of the disease usually takes place not because of the
immigration of infectives but by in situ infections
produced by the non-biological remnants of previous
populations. Mollison (1991) refers to this, not incon-
siderable, infelicity as ``the atto-fox problem.''

A related difficulty is observed in spatial predator�prey
models. Sherrat et al. (1995, 1997) have made careful
observations of the behaviour of a variety of deter-
ministic predator�prey models in the wake of invasion
fronts. Where the local dynamics are strongly damped,
the system passes uncontroversially to spatially
homogeneous co-existence. However, where the local
dynamics are weakly damped or locally unstable, they
observe persistent complex wakers which are frequently
chaotic. They note that such wakes invariably contain
local regions in which the abundance of one or more of
the players falls to microscopic levels and that recovery
from these events involves in situ (and thus unbiological)
regrowth rather than immigration from more highly
populated regions.

Gurney and Nisbet (1998) show that preventing
unbiological infections stemming from microscopic
remanent populations in the SEI epidemic model has a
relatively minor effect on the propagation of the initial
epidemic front but causes a dramatic change in the wake
following that front. The complex wake caused by
unbiological re-infection is replaced by simple extinction
of disease and recovery of the susceptible population to
carrying capacity. A parallel investigation of the
Rosenzweig�McArthur predator�prey model (Gurney et
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al., 1998) produced very similar conclusions. This leads
us to conclude that the complex chaotic wakes observed
by Sherrat et al. (1997) depend on in situ regrowth.
When this is prevented they are replaced by simple prey
depletion, leading to predator extinction and eventual
prey recovery to carrying capacity.

Gurney et al. (1998) show that this change in post-
invasion behaviour has very significant consequences for
long-term population persistence. In essence, the initial
invasion (or epidemic) front is followed by a region of
prey (or susceptible) depletion which the predators (or
infectives) cannot cross. Long-term persistence of the
predator or disease thus requires either very long range
dispersal of viable groups of individuals or the formation
of spatially ordered structures such as spiral waves.
Gurney et al. (1998) develop a series of low threshold
approximations for the principal characteristics of the
invasions predicted by the Rosenzweig�McArthur model
and show that these are adequate predictors of the
properties of one- and two-dimensional soliton and
spiral-wave solutions obtained by direct simulation.

Although the characteristics which facilitate the
development of these low threshold approximations are
common in predator�prey systems, they are seldom
found in realistic epidemic models. Although in situ
regrowth can often be prevented by the ad hoc choice of
a very small threshold, the biologically appropriate
threshold value for many epidemic systems is large
enough to cause a significant change in propagation
velocity.

In this paper, we address the problem of determining
those characteristics of epidemics and invasions which
are robustly predicted by deterministic models with
thresholds. Our first target was the velocity of propaga-
tion of the main epidemic front. Although we have been
unable to improve on the linear zero-threshold result as
an analytic predictor, we have been able to develop an
extremely efficient numerical method with essentially
arbitrary accuracy. For one-species models we can prove
the correctness of this method. The extension to multi-
component systems such as the SEI model is essentially
heuristic, but a considerable quantity of numerical cross-
checking has failed to unearth a single instance where its
results are inconsistent with full simulations taking three
to four orders of magnitude longer to perform. We have
also been able to extend the method to provide values
for the spatial extent of the initial invasion front and the
peak density of predators (or infectives) contained in it.

Our paper concludes by extending the model of
European fox rabies developed by Anderson et al. (1981)
and Murray (1989) to include a threshold effect. We
chose this system as an exemplary application of the
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methodology developed in this paper because its
parameters are well known, and because the likely
threshold is a substantial proportion of the peak inci-
dence��leading us to expect a significant reduction in



epidemic velocity. However, because the transmission
coefficient is estimated by observing that the epidemic
dies out at a given (low) carrying capacity, the parameter
revisions which accompany the introduction of a
threshold return our velocity estimate to a value close to
the zero-threshold result. Thus, the only effect of adding
a realistic threshold to the fox-rabies epidemic model is
to eliminate the erroneous behaviour in the wake of the
primary epidemic wave��that is, the atto-fox effect.

2. ONE-COMPONENT SYSTEMS

2.1.General Treatment

In this section we consider a generalisation of the
model introduced by Fisher (1937) to describe the
invasive spread of a diffusively dispersing organism with
logistic local dynamics. If we represent the density of
the organism at time T and position X by N(X, T ),
then the model is

�N
�T

=QN \1&
N
K++9

�2N
�X 2 , (1)

where Q is the intrinsic growth rate, K is the carrying
capacity, and 9 is the diffusion coefficient. We recognise
the inverse of the intrinsic growth rate Q&1, the carrying
capacity K, and the diffusion length - 9�Q as the natural
scales of time, population, and length, respectively. We
define scaled population, time, and distance as n#N�K,
t#QT, and x#X - Q�9, respectively. Thus, without
any loss of generality, we restate the model as

�n
�t

=n(1&n)+
�2n
�x2 . (2)

The properties of this model are well known (Skellam,
1951; Hadeler and Rothe, 1975; Murray, 1989). If a
propagule of individuals is introduced into a previously
empty system, the local population grows towards the
carrying capacity and spreads into the surrounding
empty territory. Eventually, the invaded and uninvaded
regions are separated by a narrow ``invasion front,''
which moves into the uninvaded territory at constant
speed. Although the front velocity formally depends on
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the initial condition, all initial conditions with compact
support excite a front traveling at the minimum possible
scaled velocity, which can be shown to be v=2. This is
equivalent to an unscaled velocity V=2 - Q9.
FIG. 1. Generic behaviour of the model defined by Eq. (3)��
specific g(n) given by Eq. (11) with a=1.5 and nT=0.3. (a) Net growth
function. (b) Typical invasion front. (c) Phase-plane analysis with
vR=0.47: solid line shows the isocline implied by Inequality (8).
(d) Group of solutions for z>0 in a moving frame of reference
(Eq. (5))��each labelled with the valve of vR .

To generalise this model, we define g(n) to represent the
(scaled) local net population growth rate, and so write

�n
�t

= g(n)+
�2n
�x2 . (3)

For the Fisher model, g(n)=n(1&n), implying positive
growth for any population between zero and the carrying
capacity (n=1). We want to represent a situation where
very small populations cannot grow, so we assume that
g(n) has the form typified by Fig. 1a: negative for n below
a threshold value nT , positive for nT<n<1, negative for
n>1, and zero at n equals 0, nT , and 1.

We want to study an invasion front moving from right
to left as shown in Fig. 1b. We therefore transform the
problem into a frame of reference moving leftwards at
speed vR , by defining new variables z#x+vRt and
,(z)#dn�dz. For a front travelling with constant shape,
n depends only on z, so we can re-express Eq. (3) as

dn
dz

=,,
d,
dz

=vR,& g(n). (4)

If we place the zero of z at a point where n=n0<<
nT<1 then Eq. (4) can be approximated for z�0 by
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d 2n
dz2 &vR

dn
dz

+ g$(0) n=0 where g$(0)#_dg
dn&n=0

<0.

(5)



This has two solutions of the form n=n0 e*z. Any solu-
tion with *>0 goes to zero as z � &� and is thus of the
form which we require. Hence we can deduce that

*= 1
2 (vR+- v2

R&4g$(0)). (6)

Hence, for z�0 we solve Eq. (4) subject to the initial
conditions

n(0)=n0 , ,(0)=*n0 . (7)

We can deduce the characteristics of the resulting solu-
tions from a phase-plane analysis. Inspection of Eq. (4)
shows that the condition for n to increase with z is just
,>0, while the condition for , to increase with z is

,>
g(n)
vR

. (8)

The implications of these conditions, and especially the
boundary between the regions in which , increases and
decreases, are illustrated in Fig. 1c.

We first consider solutions with a given value of
vR , n(0)=n0<<nT<1, and arbitrary (positive) values of
,(0)=,0 . For large enough values of vR , all such trajec-
tories tend to n=� as z � �. At lower values of vR there
are three possibilities. For a single value of ,0 , which we
denote by ,c(vR), the trajectory hits the steady state (1, 0).
For ,0>,c(vR), n � � as z � �, while for ,0<,c(vR),
the trajectory rises to a value above n=nT and below 1
before eventually falling back below n=nT . In
Appendix A we show that ,c is a non-increasing function
of vR .

We now consider solutions with the initial value of ,
linked to the frame of reference velocity vR by setting
,0=*n0 with * given by Eq. (6). We shall restrict our-
selves to growth functions which permit the formation of
an invasion front. Thus, if we set vR to the exact value of
the front velocity v, the trajectory must be that which hits
(1,0), and we know that *(v) n0=,c(v). If we now con-
sider a trajectory generated with vR<v then we know
from Eq. (6) that ,0=*(vR) n0<*(v) n0 . But, since ,c is
a non-increasing function of vR , we know that
,c(vR)�,c(v)=*(v) n0 . Hence we can be sure that
,0<,c(vR) and thus that the trajectory falls into the class
which rise to a value between nT and unity before even-
tually falling back below zero. An essentially parallel
argument shows that if we set vR>v the solution always
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tends monotonically to n=� as z � �.
As we illustrate in Fig. 1d, the behaviour implied by

this argument appears highly inconvenient, because it
requires us to set the frame of reference velocity exactly
equal to the front velocity if we wish our solution to
represent the wave-front correctly. However, viewed
from a different perspective it provides us with a way of
determining whether the frame of reference velocity is
greater than or less than the (unique) front velocity, and
thus of determining the front velocity by a simple bisec-
tion search.

2.2. The Fisher Equation with an Allee Effect

As an example of the class of systems discussed above,
we extend the basic Fisher model to include an Allee
effect (Allee, 1937). Specifically, we imagine an organism
with a linearly density dependent per capita death rate,
D, and a per capita fecundity rate, B, which is constant
(B0) at high densities, but increases linearly with slope B1

at low densities. That is, we write

D=D0+D1 N B={B0

B1N
N>(B0 �B1)
otherwise.

(9)

If we define Q#B0&D0 and K#Q�D1 then these
assumptions imply that the unscaled net growth function
G(N) is

G(N)={QN(1&N�K)
&D0N+(B1&D1) N2

N>(B0 �B1)
otherwise.

(10)

Adopting the scaling which led to Eq. (2), and defining
a#D0 �(B0&D0) and nT #aD1�(B1&D1) we find that
the scaled equivalent of this expression is

g(n)={n(1&n)
a(n�nT)(n&nT)

n>ns

otherwise
(11)

where

ns #
1+a

1+(a�nT)
. (12)

In this parameterisation, nT represents the scaled
threshold value and &a is the slope of the growth func-
tion at n=0. To determine the initial condition for
Eq. (4) we set n0=min(0.001, nT �100), use Eq. (6) to
relate * to our choice of vR , and thus determine n(0) and
,(0) from Eq. (7). We then conduct a bisection search,
starting with vR=&1 and vR=2, which we know must
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bracket the actual velocity. The centre point of the inter-
val is tested by solving Eq. (4) and determining if the
solution passes above unity or falls back below threshold.
In the first case the test velocity is above the front velocity



FIG. 2. Scaled front velocity (a) and width (b) as a function of
scaled threshold (nT), for the model defined by Eq. (4) and (11). Values
of a marked on each curve. Velocities determined by a 20 step bisection
search starting on [&1, 2]. Widths determined to 1 in 103.

and the centre point becomes the high end of the new
bracketing pair. In the second, it is below and the centre
point becomes the low end of the next bracket. Twenty
repetitions of this procedure, which takes about 0.1 s on
a medium power workstation, gives the scaled front
velocity to 1 in 106.

In Fig. 2a we show the relation between scaled front
velocity and threshold for three values of a. In all cases
the velocity converges slowly to the non-threshold
system value, v=2, as nT � 0. As we would expect, finite
thresholds slow up the front. At nT r10&4 the velocity is
reduced by about 100, while at nT r10&2 the velocity is
reduced by between 200 and 400. As the threshold
approaches unity, forward propagation stops at a critical
threshold which depends strongly on a. For thresholds in
excess of the critical value, the dynamic equations for-
mally possess a solution of the same form but with a
negative velocity. However, with any biologically
realistic initial invasion, this solution corresponds to the
extinction of the invading propagule.

A further possibility is suggested by Fig. 1d which
shows the behaviour of this system for a=1.5, nT=0.3.
As vR converges towards the exact front velocity v, the
solution of Eq. (4) follows the exact wave shape for
longer and longer before diverging off to zero or �.
Thus, by running the bisection process for more itera-
tions than are needed to measure the front velocity, we
can use the same calculation to give us an estimate of the
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front width, which we define as the distance between the
points at which n(z)=0.05 and 0.95. The values shown in
Fig. 2b were determined by a calculation which ter-
minated whenever the estimates of this quantity from the
current upper and lower bracket velocities differed by less
that 1 part in 103. In practice this normally requires
between 5 and 50 extra iterations, so the computational
cost, although much increased over that of simple
velocity determination, remains trivial.

We see from Fig. 2b that the scaled width of the inva-
sion front changes quite markedly with its velocity. As
the front slows down, it becomes steadily narrower��an
effect we would expect if local growth to carrying
capacity took a (scaled) time which was essentially con-
stant.

3. TWO-COMPONENT SYSTEMS

We now turn our attention to systems with two
players. Since these systems are not as amenable to
analysis as their single species counterparts, we examine
specific examples.

3.1. The S�I Model

Our first example is a spatial extension of the well-
known ``susceptible�infective'' (S�I) epidemic model. We
assume that susceptibles are immobile, and that in the
absence of infection their population density, S(X, T ),
would grow logistically. The conventional version of this
model assumes that the per capita rate at which suscep-
tibles become infected is proportional to the local density
of infectives, I(X, T ), with the constant of propor-
tionality (B) being known as the transmission coefficient.
It then assumes that infected individuals suffer per capita
mortality at rate D0 and disperse diffusively with diffu-
sion constant 9. Hence the dynamics of the system are

�S
�T

=QS \1&
S
K+&BSI

�I
�T

=(BS&D0) I+9
�2I
�X2 .

(13)

The usual interpretation of deterministic models of this
kind is that they describe the dynamics of average den-
sities calculated over a (very) large ensemble of replicate
systems. Practical biological experiments generally
encompass only a modest degree of replication, so we
shall take an alternative view in which Eq. (13) are seen
as describing averages calculated over a finite-sized
ensemble containing NR replicates.
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At time T, each replicate will contain a number of
infective and susceptible individuals distributed over the
available space. To estimate the ensemble average infec-
tive density at X, I(X, T ), we define a quadrat of area AQ



centred at X in each system, count the number of infec-
tive individuals contained in this set of quadrats, and
divide the result by the product of the quadrat area and
the number of replicates. The minimum non-zero value of
I(X) occurs when quadrat X contains zero individuals in
every replicate except one, where it contains a single
individual��a configuration which implies that I=
(NR AQ)&1.

It is thus clear that all values of I in the range
[0, (NR AQ)&1) should be interpreted as representing a
condition in which the infective population of quadrat X
is extinct. In discrete space�time models which use con-
tinuous state variables it is common practice to recognise
this by setting local population densities below an
appropriate threshold value to zero. However, in a for-
mally continuous space�time model this option is
profoundly unappealing since it induces discontinuities
in the spatial distribution.

We choose instead to eliminate unbiological behaviour
which might result from effectively extinct local popula-
tions of infectives by preventing such local populations
from producing infections. The most obvious way of
doing this would be to set the transmission coefficient (B)
to zero for infective populations below a threshold
IT r(NRAQ)&1.

We performed a number of our early experiments
using this formulation. Although it turns out to be quite
straightforward to generalise the bisection method for
numerical velocity determination to tolerate a discon-
tinuous dependence of B on I, it is less easy to perform
accurate simulations on this basis. Since the main pur-
pose of this paper is to demonstrate the reliability of the
bisection method by detailed comparison with explicit
simulations, we chose to implement the threshold effect
by assuming a continuous dependence of B on I of the
form used in the last section, namely

B={B0

(D0 �K)(I�IT)
I�ITB0K�D0

otherwise.
(14)

Here, IT represents the infective density below which the
infective population cannot increase, even when the
susceptible population is at carrying capacity.

Defining scaled variables s#S�K, i#I�K, t#QT,
x#X - Q�9 and parameter groups b0 #B0 K�Q, d0 #

D0 �Q, iT #IT �K allows us, without losses of generality,
to re-express this model as
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�s
�t

=s(1&s)&bsi
�i
�t

=(bs&d0) i+
�2i
�x2 , (15)
where

b={b0

d0 i�iT

i�b0 iT�d0

otherwise.
(16)

This model has three, non-trivial, spatially homo-
geneous stationary states: one with no infectives and
susceptibles at carrying capacity, one with high s* and
low i*, and one with low s* and high i*. Provided iT<
(d0�b2

0)(1&d0 �b0), the high i* steady state is identical to
that of the equivalent un-thresholded model, namely

s*=
d0

b0

, i*=
b0&d0

b2
0

. (17)

So long as this steady state is positive (b0>d0) it is
locally stable. Spatially uniform perturbations return to
it monotonically if

b0&d0<
d0

b0

(18)

and return via damped oscillations otherwise.
The properties of the non-threshold version of this

model have been investigated by Dunbar (1983, 1984),
whose work is summarised in a more approachable form
by Murray (1989). For all biologically sensible
parameters, introduction of a propagule of infected
individuals into a universe previously occupied by sus-
ceptibles eventually produces a stable-shaped epidemic
front moving at a (scaled) velocity v0 given by

v0=2 - b0&d0 . (19)

When Inequality (18) is fulfilled, the front has at most
one overshoot before settling to the steady state given by
Eq. (17). Otherwise, the front trails a ``wake'' of damped
oscillations.

When the local dynamics are non-oscillatory or the
scaled threshold iT is small, the behaviour of our
modified model is unchanged except for a reduction in
front velocity (Fig. 3a). However, the combination of
oscillatory dynamics and a finite threshold can produce
a radical change in behaviour. In Fig. 3c, the threshold is
above the minimum infective density which would occur
in the trough behind the initial epidemic if there were no
threshold. Now, the infective population does not
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recover from this trough, but instead declines asymptoti-
cally to zero, allowing the susceptible population to
recover to the carrying capacity. Thus, in addition to
changing the velocity of the front, in this case the



FIG. 3. Epidemic waves in the S�I model with b0=12, d0=4.
Frames (a) and (c) show snapshots of the wavefront at t=25 for
iT=10&6 and 5_10&3, respectively. Frames (b) and (d) show equiv-
alent solutions in frames of reference moving at different (marked)
velocities. To obtain (b) and (d) we solved Eqs. (20) and (21) with
s(0)=1, i0=iT_10&3, using RK4 with an allowed error of 1 in 106. To
obtain (a) and (c) p.d.e.'s (15) were discretised by the method of lines
onto a grid with 2x=0.25 and the resulting system of o.d.e.'s integrated
using RK4 with an allowed error of 1 in 104.

threshold has changed the post-epidemic state of the
system from a persistent admixture of susceptibles and
infectives to one containing only susceptibles.

Guided by the results of the last section we study the
behaviour of this system in a frame of reference moving
at velocity &vR . Since we are looking for a constant-
shape solution, we assume that i and s depend only on
z#x+vR t, define ,(z)#di(z)�dz, and hence re-express
Eq. (15) as

d,
dz

=vR ,&(bs&d0) i,
di
dz

=,, (20)

ds
dz

=v&1
R [s(1&s)&bsi], (21)

where b is defined by Eq. (16). If we place the zero of z at
a point to the left of the front, where i=i0<<iT , then we
can be sure that for all z<0, s(z)r1 and hence
i(z)=i0e*z, where

*= 1
2[vR+- v2

R+4d0 ]. (22)
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Hence, for z>0 we must solve Eq. (20) and (21) subject
to the initial conditions s(0)=1, i(0)=i0 , and ,(0)=*i0 .

The solutions thus produced, which we illustrate in
Figs. 3b and 3d, are strongly reminiscent of those we
obtained for the Fisher equation in the last section. In
particular, they follow the true shape of the wavefront for
a distance which depends on how close the frame of
reference velocity is to a single value, which we
hypothesize must be the front velocity in a static frame of
reference. If the frame of reference velocity is less than the
front velocity then the density of infectives eventually
becomes negative, while if vR>v the infective density
diverges to +�. Although in this case we cannot prove
this behaviour to be generic, we have performed a wide-
ranging numerical investigation without uncovering a
single counterexample.

This regularity of behaviour again presents us with an
opportunity to make an efficient numerical determina-
tion of the velocity of the epidemic front using a bisection
search. In Fig. 4a we show curves of front velocity against
threshold infective density calculated in this way. Since
we cannot prove that this procedure converges to the
correct front velocity, we have also performed direct
simulations of the model defined by Eqs. (15) and (16)
and measured the asymptotic properties of the epidemic
front. We show that the velocities thus observed are in
excellent agreement with those predicted by the bisection
method. We also notice that as the threshold goes to
zero, the bisection method velocity predictions converge

FIG. 4. Properties of epidemic fronts in the S�I model with d0=4
and b0 as marked, plotted against normalised threshold iT . Smooth
curves show results from Eqs. (20) and (21) using the bisection method.
Points show results from numerical solution of Eq. (15): b0=4.5 (cir-
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cles), b0=5 (squares), b0=12 (diamonds), b0=40 (triangles). (a)
Front velocity, shown as v�v0 where the zero threshold value
v0=2 - b0&d0 . (b) imax=maximum abundance of infectives. (c)
wf=distance between the point where i first exceeds 0.05imax and the
point where it first exceeds 0.95imax .



(albeit slowly) to the zero-threshold velocity (v0) given
by Eq. (19).

Figs. 3b and 3d show a further similarity with our
earlier findings on the Fisher model, namely that the
solutions in a frame of reference moving at velocity vR

follow the correct front shape for a longer and longer dis-
tance as vR approaches the front velocity v. Deducing the
whole wave shape from such a calculation would require
us to identify the front velocity to an accuracy well
beyond the numerical precision of any practicable com-
puting machinery. However, it is entirely possible to
make our identification accurate enough to measure the
maximum abundance of infectives (imax) and the width of
the period of epidemic onset (wf). In Figs. 4b and 4c we
show the values of these quantities inferred from the
bisection method calculations, compared with the results
of a small number of confirmatory simulations. Again, we
see excellent agreement.

3.2. The Rosenzweig�McArthur Model

Our second two-component example is a spatial exten-
sion of the Rosenzweig�McArthur predator�prey model
(Rosenzweig, 1971). Here we assume that the prey
(F(X, T )) is immobile and grows logistically with intrin-
sic growth rate R to a carrying capacity K in the absence
of predation. The predators (C(X, T )) disperse dif-
fusively with diffusion constant 9 and suffer density-
independent mortality at per capita rate D0 . They kill
prey at a rate U given by a Holling type II functional
response with maximum uptake rate Um and half-satura-
tion prey abundance H,

U(F )#
Um F
F+H

. (23)

Ingested prey are turned into new predator individuals
with efficiency E. Hence, the dynamics of the system are
described by

�F
�T

=QF \1&
F
K+&UC

(24)
�C
�T

=(EU&D0) C+9
�2C
�X 2 .

Provided that predators never become locally scarce this
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model can safely be assumed to have a constant value of
prey�predator conversion efficiency, E0 . However, if
reproduction is sexual, then predators present in very
small abundances will be unable to mate and hence turn
ingested prey into new predators. To model this effect, we
write

E={E0

D0C�(Um CT)
C�CTE0Um�D0

otherwise.
(25)

We identify Q&1, - 9�Q, H, and E0H as the natural
scales of time, distance, food, and consumer population,
respectively, and re-express the model in terms of dimen-
sionless variables t#QT, x#X - Q�9, f #F�H, c#

C�(E0H), and parameter groups k#K�H, um #Um�Q,
cT #CT �(E0H); thus

�f
�t

= f \1&
f
k+&uc

�c
�t

=(eu&d0) c+
�2c
�x2 , (26)

where

u=
um f
1+ f

(27)

and

e={1
d0c�(um cT)

c�cTum�d0

otherwise.
(28)

This model has many similarities to the S�I epidemic
model discussed above. It has spatially homogeneous
exterior steady states at (c*, f *)=(0, 0) and (0, k).
Provided

cT<
d0

um&d0 \1&
d0

k(um&d0)+ , (29)

it has a spatially homogeneous interior steady state

f *=
d0

um&d0

, c*=(1+ f *) \1&
f *
k + , (30)

which is identical to that of the equivalent non-
thresholded model. However, in contrast to the S�I
model case, the interior steady state is locally unstable
against spatially uniform perturbations if

k>
um+d0

um&d0

. (31)
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Invasions in this system behave in a very similar way
to the epidemics shown in Fig. 3. When the local
dynamics are stable and either strongly damped or non-
oscillatory, the invasion front trails a short wake, leading



eventually to spatially uniform co-existence (cf. Fig. 3a).
When the local dynamics show oscillatory instability or
weakly damped oscillations, the solution takes the form
of a soliton (cf. Fig. 3c).

As before, we study the behaviour of such solutions by
transforming the system into a frame of reference moving
at velocity &vR . Since we are looking for a constant-
shape solution, we assume that c and f depend only
on z#x+vR t, define ,(z)#dc(z)�dz, and re-express
Eq. (26) as

d,
dz

=vR,&(eu&d0) c,
dc
dz

=,, (32)

df
dz

=v&1
R [ f (1& f�k)&uc], (33)

where u is defined by Eq. (27) and e by Eq. (28). If we
place the zero of z at a point to the left of the front, where
c=c0<<cT , then we can be sure that for all z<0,
f (z)rk and hence c(z)=c0e*z where

*= 1
2 [vR+- v2

R+4d0 ]. (34)

Hence, for z>0 we must solve Eq. (32) and (33) subject to
the initial conditions f (0)=k, c(0)=c0 , and ,(0)=*c0 .

The behaviour of this transformed system is essentially
identical to that of the S�I system illustrated in Figs. 3b
and 3d. If the frame of reference velocity vR is greater
than the front velocity (v) then the normalized consumer
population (c(z)) tends to � as z becomes large. If vR<v
then the normalised consumer population eventually
becomes negative. As the frame of reference velocity
approaches the true front velocity the solution of the
transformed system follows the true solution to
progressively larger values of z. Although we cannot
prove that this behaviour is generic, we have conducted
a wide-ranging numerical investigation without finding
any counter-examples.

As in the case of the S�I model, this behaviour
provides us with an efficient numerical route to determin-
ing the velocity of the front by a bisection search. Extend-
ing the bisection process to sufficiently high accuracy
allows us to determine the characteristics of the early
part of the front��namely the peak consumer density and
the spatial width of the initial invasion ahead of the peak
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consumer density.
In Fig. 5 we plot the results of four such investigations,

together with a small number of results measured (at
many orders of magnitude more labour) from direct
FIG. 5. Properties of epidemic fronts in the Rosenzweig�
McArthur model with um=0.2, d0=0.05, and k as marked, plotted
against normalised threshold cT. Smooth curves: results from Eqs. (32)
and (33) using the bisection method. Points: results from numerical
solution of Eq. (26): k=2.5 (circles), k=5 (squares), k=10
(diamonds), k=20 (triangles). (a) front velocity, shown as v�v0 where
the zero threshold value v0=- um&d0 . (b) cmax=maximum
abundance of predators. (c) wf=distance between the point where c
first exceeds 0.05cmax and the point where it first exceeds 0.95cmax .

solution of the scaled dynamic equations (26). As for the
S�I model we see excellent agreement between our bisec-
tion method estimates and the confirmatory simulations.
In further confirmation, we note that as cT � 0 the
velocity of the invasion front tends (albeit slowly) to the
analytic value derived for the threshold-free system.

4. THE S�I MODEL AND EUROPEAN
FOX RABIES

Our final example is a spatial variant of the well-
known S�E�I epidemic model developed to represent a
disease, such as rabies, which has a long incubation
period. We consider a one-dimensional universe con-
taining individuals who can be susceptible, exposed
(infected) but not infectious, or infectious (rabid). The
local susceptible population grows logistically to carry-
ing capacity K. Susceptible individuals are infected by
contact with rabid individuals, whereupon they enter
the exposed state, from which they have a constant prob-
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ability per unit time of progressing to the infective stage.
This model expresses the dynamics of the normalised
populations of susceptibles, exposed and infectives
(S(X, T ), E(X, T ), and I(X, T )) as



TABLE I

Parameters for the SIR Fox�Rabies Model

Parameter Symbol Value Units

Carrying capacity K 0.2 � 4 km&2

Intrinsic growth rate Q 0.5 yr&1

Exposed mortality De 0.5 yr&1

Infective (rabid) mortality Di 73 yr&1

Transmission coefficient B 80 km2�yr
Transfer rate 3 13 yr&1

Diffusion coefficient 9 200 km2�yr

�S
�T

=QS \1&
S
K+&BSI,

�E
�T

=BSI&(De+3) E
(35)

�I
�T

=3E&Di I+9
�2I
�X2 . (36)

The parameters De and Di represent the normalised per
capita mortality rates of exposed and infective (rabid)
individuals, B is the transmission coefficient, 3 is the
transfer rate between exposed and infective categories,
and 9 is the diffusion coefficient. The properties of this
model are discussed in Murray (1989) and Gurney
and Nisbet (1998), who quote the parameter values
reproduced in Table I for rabies in the European fox
population.

With these parameters, the model produces invasion
fronts which move at velocities comparable to (but
arguably somewhat above) those observed in the field.
The wake behind the invasion front contains about five
after-shocks of diminishing amplitude, and the system
eventually settles at the co-existence steady state. Gurney
and Nisbet (1998) showed that the occurrence of these
after-shocks is critically dependent on re-infection of the
susceptible population by unbiologically small remnants
of the preceding outbreak. They further showed that if
such unbiological remnants were prevented from acting
as a source of infection, the invasion front remained
relatively unaffected but the wake changed dramatically.
The after-shocks disappear entirely, and the eventual
state far behind the epidemic is rabies-free, with the
susceptibles at their carrying capacity.

To facilitate comparison of bisection method and
explicit simulation results, we incorporate a threshold
into the model in a slightly less discontinuous way, by
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assuming that the transmission coefficient is constant
(B0) at high local densities of rabid individuals, but falls
linearly with low local densities. We represent this by
writing
B=

{B0

[(3+De) D i�(3K)](I�IT)
I�KB0IT 3�(Di(3+De))
otherwise,

(37)

so that the parameter IT represents the minimum local
density of rabid individuals which can grow in the
absence of immigration, provided the susceptibles are at
carrying capacity.

The relationship between the behaviour of the model
defined by Eqs. (35), (36), and (37) and its non-
thresholded cousin is very similar to that described by
Gurney and Nisbet (1998) and discussed earlier in this
paper in the context of the SI model. However, this ver-
sion of the thresholded SEI model turns out to be suscep-
tible to the treatment described earlier for the SI
epidemic model and the Rosenzweig�McArthur predator
�prey model. If we transform the system into a frame of
reference moving with an arbitrary velocity VR , then the
properties of the resulting solutions depend critically on
the relation between VR and the epidemic front velocity
V. If VR>V then the solution of the transformed system
has I � � as z becomes large, whereas V<VR implies
that I eventually passes below zero. Since the interior
steady state is always unstable in the transformed system,
all solutions eventually go to � or become negative
except in the special case VR=V. As VR approaches V
the solution in the transformed system follows the correct
wave shape for an increasing distance in the transformed
co-ordinate.

This behaviour implies that the numerical technique
explored earlier for finding the properties of epidemic
fronts in simpler systems, can also be expected to work
here. In Fig. 6 we show the relationship between
threshold rabid density (IT) and front velocity, height,
and width for a series of values of carrying capacity span-
ning the plausible range for the European fox. On the
same diagram we show a number of values of the same
quantities calculated from direct simulations of Eqs. (35),
(36), and (37). Since we see excellent agreement between
bisection method results and direct simulations at a
widely distributed set of points, we can have confidence
that the broad picture shown in this diagram is accurate.

Gurney and Nisbet (1998) showed that with the
parameters given in Table I, a threshold as low as
10&6 km&2 gives rise to a soliton solution of the type
shown in Fig. 3c. Their simulation results suggest that
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such a low threshold value should affect the epidemic
velocity by only a few percent, and this is confirmed
by the more accurate calculation leading to Fig. 6.
However, this figure also shows that higher values of IT



FIG. 6. Properties of epidemic fronts as a function of threshold
(IT) in the thresholded S�I model with parameters from Table I. Curves
show values derived from the bisection search method for a given value
of K. Points show direct simulation results. (a) Front velocity; (b) peak
infective (rabid) density; (c) front width defined as in Fig. 5.

can produce very significant changes in epidemic proper-
ties.

To make an estimate of an appropriate threshold in
this case, we note that the average lifetime of an
individual showing clinical symptoms (and hence acting
as a source of infection) is 5 days (0.014 yr). It seems
highly unlikely that any infected individual can live for
more than twice this period (0.028 yr). Murray (1989)
argues that although the diffusion coefficient for rabid
foxes is hard to estimate accurately, its value must lie in
the range from 70 to 330 km2 per year. The root mean
square displacement of a rabid individual between
becoming infective and dying must therefore be between
2.8 and 6.1 km. Since the probability distribution of this
displacement is Gaussian, it seems reasonable to assume
that any susceptible which does not have at least one
rabid individual within three times the root mean square
displacement is safe from infection. This implies that IT

lies between 1_10&3 km&2 and 4.5_10&3 km&2.
In terms of our earlier discussion of the interpretation

of thresholds, we note that since the peak infective den-
sity is on the order of 0.3 km&2 (Fig. 6) we should think
of the densities in our rabies model as being defined on
quadrats with AQ r3 km2. This implies that with
thresholds in the range given above, we should interpret
our model as describing the dynamics of averages taken
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over an ensemble containing between 75 and 330
members.

It is clear from Fig. 6 that a threshold of the order of
2_10&3 km&2 will decrease the velocity and increase the
width of the epidemic front by around 300 compared to
the values predicted by a model with zero threshold and
otherwise identical parameters. However, we recall that
the value given in Table I for the transmission coefficient
(B0) was chosen to match the observation that rabies is
not self-sustaining when the fox carrying capacity is
below a critical value, K o

c . Figure 6 implies that at a given
value of B0 , the minimum value of K for a self-sustaining
epidemic (Kc) depends on IT . Thus, once a value for IT

has been selected, B0 must be re-adjusted to return Kc to
its observed value, K o

c .
Observed values of K o

c cover a range from 0.25 to
1.0 km&2 (Lloyd 1976, Andral and Toma 1977). We
arbitrarily choose the middle of this range and set
K o

c =0.63 km&2. Since the ratio of the smallest to the
largest possible value of diffusion coefficient is nearly 5,
we choose as our best estimate of this quantity a value,
9=150 km2 yr&1, which differs from both ends of the
range by roughly the same factor (r2.2). In Figs. 7a and
7b we show the best estimate of front velocity and peak
rabid abundance calculated using these parameters.
Although introducing a threshold with all other
parameters held constant always reduces front velocity,
the adjustment to B0 required to return Kc to its observed
value K o

c implies that the results differ little from those
derived by Murray (1989) from the zero-threshold
version of this model.

FIG. 7. Predicted characteristics of rabies epidemics in the
European fox population. Solid curves show best estimates, dotted
curves show values calculated from extremal values of diffusion coef-
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ficient. Upper frames show velocity (a) and peak incidence (b) with con-
stant diffusion coefficient. 9=150 km2 yr&1, IT=2.1_10&3 km&2,
B0=221 km2 yr&1. Lower frames show velocity (c) and peak incidence
(d) with 9 B 1�K. 9=300�K km2 yr&1, IT=1.05K_10&4 km&2,
B0=164 km2 yr&1.



A characteristic feature of the predictions of both
thresholded and non-thresholded SEI models is that the
predicted front velocity is a strongly increasing function
of carrying capacity. This conflicts with field observa-
tions suggesting that the epidemic velocity is always in
the range 30�60 km yr&1. In their (linear) treatment, van
den Bosch et al. (1990) overcome this problem by
postulating that the size of fox territories, and hence the
diffusion coefficient, is inversely proportional to fox den-
sity. To investigate the effect of this assumption in our
model, we assume that territory size cannot adjust
rapidly to changes in instantaneous density, so that the
diffusion constant may be regarded as inversely propor-
tional to carrying capacity K. As a direct corollary of this
assumption we also take IT to be proportional to K. We
assume, rather arbitrarily, that our previous evaluation
of diffusion constant produced the appropriate result for
a fox density of 2 km&2, so we set 9=300�K km2 yr&1

and IT=(1.05_10&4) K km&2.
In Figs. 7c and 7d we show the best estimates of front

velocity and peak rabid abundance calculated using this
prescription and adjusting B0 so that Kc=K o

c =
0.63 km&2. Again, the absolute size of the predicted
velocity is surprisingly close to the equivalent zero-
threshold results (van den Bosch et al. 1990). As we
might expect by analogy with that calculation, the key
feature of the results from this variant of the model is that
over most of the plausible range of carrying capacity, the
epidemic velocity is almost independent of K.

The most striking conclusion from both calculations
shown in Fig. 7 is that the difference between the velocity
predicted by our modified S�E�I model and that pre-
dicted by its less biological cousin is dwarfed by the
uncertainty in the absolute size of the diffusion coefficient
and the dependence (if any) of that diffusion coefficient
on carrying capacity. This suggests that those features of
the model predictions which are robust against the elimi-
nation of unbiological infectivity��mainly the existence
and properties of the initial epidemic wave��can safely be
modelled by deterministic reaction�diffusion methods
with or without thresholds. Those features which are
critically dependent on the occurrence of unbiological
infection��specifically the passage to a stable endemic��
can safely be eliminated from the repertoire of a reaction�
diffusion formulation by the addition of a threshold or
Allee effect.
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5. DISCUSSION

In this paper, we describe an efficient numerical
method for determining the characteristics of an
epidemic or invasion when the invading organism cannot
grow from arbitrarily low densities. This method depends
on observing that when we transform the reaction�diffu-
sion description of the system into a moving frame of
reference, its properties change dramatically. All the inte-
rior steady states become violently unstable and generat-
ing a solution which ends on any of them poses a
problem akin to firing a ball bearing up a smooth moun-
tainside so that it finishes up balanced on the summit.

The key to exploiting this situation turns out to be the
fact that although hitting the steady state requires exact
determination of the correct frame of reference velocity
and is thus functionally impossible, determining whether
the ball passes over the ridge or falls back is simple.
Moreover, the distinction between overshooting and fall-
ing back turns out to correlate exactly with the relation
between the frame of reference velocity and the front
velocity��providing a natural route to determining the
front velocity to an arbitrary degree of accuracy by a
bisection search.

Although we have only proved the correctness of this
methodology for the class of single component models
formed by generalizing the Fisher model, we have
observed experimentally that it works excellently for
a wide class of multi-component models including the
S�I and S�E�I epidemic models and the Rosenzweig�
McArthur predator�prey model, with a variety of
alternative representations of low density behaviour.

Although the solution of the transformed system
always diverges from the ``correct'' solution eventually,
we observe experimentally that as the frame of reference
and front velocities converge, the transformed solution
follows the shape of the untransformed solution for
progressively longer and longer. This implies that if the
bisection process designed to yield velocity estimates is
continued to rather higher accuracy than would nor-
mally be warranted by epidemic velocity data, the trans-
formed solution follows the untransformed solution far
enough for us to be able to reliably determine the charac-
teristics of the leading part of the epidemic wave��specifi-
cally the spatial extent of the epidemic onset and the peak
incidence of the disease.

The work reported here has shown that the charac-
teristics predicted for the initial epidemic or invasion
wave by reaction�diffusion formalisms are qualitatively
robust against the elimination of the atto-fox effect
(Mollison, 1991). The effect of introducing a preventative
threshold or Allee effect is generally to slow up the
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epidemic front and reduce the peak disease incidence.
However, as our application to European fox rabies
demonstrated, the particular route by which parameters
are estimated can reduce these changes to the point



where they are insignificant compared to the inaccuracies
inherent in parameter or structural uncertainty.

Because of the inherent difficulty of estimating diffu-
sion coefficients, explicit inclusion of thresholds or Allee
effects seems unlikely to change estimated velocities by
observable amounts. However, models incorporating
these effects yield robust estimates of the characteristics
of the initial epidemic, and are very amenable to efficient
numerical estimation of these quantities. In common
with their non-thresholded cousins, these models
currently have nothing useful to say about the long term
persistence of the disease��a problem which clearly
requires new observational as well as theoretical insights.
However, there are indications that they form a more
promising basis for theoretical developments in this area
than models which permit unbiological reinfection.

APPENDIX

We seek solutions of

dn
dz

=, n(0)=n0 , (38)

d,
dz

=vR ,& g(n) ,(0)=,0 . (39)

This is equivalent to

d,
dn

=#(n, vR , ,) ,(n0)=,0 , (40)

where

#(n, vR , ,)#vR&
g(n)

,
. (41)

We represent the solution of this system by ,(n, vR , ,0)
and define ,c(v) such that ,(n, v, ,c(v)) � 0 as n � 1&.

We first note that Eq. (41) implies that

v1>v2 O #(n, v1 , ,)>#(n, v2 , ,), (42)

which in turn implies that, so long as ,(n, v1 , ,0)>0,

v1>v2 O ,(n, v1 , ,0)�,(n, v2 , ,0). (43)

Epidemics and Invasions with Thresholds
Now consider two trajectories, the first calculated with
,(n0)=,c(v1) and vR=v1 , and the second calculated
from the same initial condition but with vR=v2<v1 . The
first trajectory hits (1, 0). Inequality (43) tells us that
while the first trajectory is above the n-axis, the second
trajectory cannot be above it and will generally be below
it. The second trajectory thus crosses the n axis (,=0) at
or to the left of (1, 0). If it hits (1, 0) then we know that
,c(v1)=,c(v2). If it crosses to the left of (1, 0) then the
phase plane analysis shown in Fig. 1c implies that to
cause it to hit (1, 0) we must use an increased value of
,(n0), so ,c(v1)<,c(v2). Hence, we know that

v1>v2 O ,c(v1)�,c(v2). (44)
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