Creep-fatigue life assessment of high-temperature weldments using the linear matching method Yevgen Gorash & Haofeng Chen

Department of Mechanical & Aerospace Engineering, University of Strathclyde, Glasgow, UK

yevgen.gorash@strath.ac.uk & haofeng.chen@strath.ac.uk, http://www.thelmm.co.uk

1. Theoretical Background and the Linear Matching Method

1.1 Bree diagram with responses to cyclic loading¹

1.2 Fundamentals of the Linear Matching Method²

- belongs to the group of modified elastic modulus methods;
- has the character of a non-linear programming method;
 with each step involves the solution of a linear problem;
- with each step involves the solution of a linear problem;
 each solution satisfies the condition of force equilibrium;
- non-linear constitutive assumptions are imposed sequentially;
- strain rate histories give rise to equilibrium residual stress fields;
- solution is the minimum of a functional of the strain rate history;
- generates inelastic solutions for the stabilized cyclic state;
- compatible with standard finite element codes, e.g. ABAQUS.

Alternatives to the LMM:

- Life Assessment Methods and Design Codes R5 Procedure, ASME N47 and RCC-MR (1980's – today) based on Neuber's Rule
- Conventional incremental (transient) FEA
- Direct Cyclic Analysis (DCA) incorporated into ABAQUS
- Direct Methods using Static or Kinematic Bounding Theorem (Koiter, 1960)

Development of the LMM framework:

- Modified Modulus Method (MMM) for limit load analysis (Ponter, early 1990's)
- MMM modified for elastic shakedown analysis (Ponter & Carter, 1997)
- MEM implemented as ABAQUS UMATs (Ponter & Engelhardt, 2000)
- Linear Matching Method (LMM) implemented in ABAQUS for reverse plasticity (global shakedown) & ratchet boundary evaluation (Ponter & Chen, 2001)
- LMM further developed to evaluate R5 related parameters (Ponter & Chen, 2005)

2. Testing & modelling of cruciform weldment

University of

Glasgow

Strathclyde

4. Creep-Fatigue Evaluation Procedure

4.2 FEA/LMM results corresponding to $\Delta \varepsilon_{tot} = 1\%$ and $\Delta t = 5h$

5. Analysis of the Obtained Results

5.1 Analytical functions for cycles to failure and residual life

$\tilde{M} = \frac{\Delta M_{\rm var}}{\Delta M_{\rm sh}}$		Δt , dwell time (hours)										
		0	0.5	1	2	5	10	100	1000	10000		
ent	1.470528	857	500	430	362	278	223	95	33	8		
nom	1.153799	4062	2037	1673	1339	967	746	307	122	42		
nalized r	0.925507	17025	7963	6270	4756	3168	2294	799	308	121		
	0.777426	45374	24952	19776	6 14931	9679	6755	1963	635	230		
norr	0.691045	90056	63964	52221	40511	26901	18869	5116	1415	434		
$\log(N^{\star}) = a(\Delta t)\tilde{M}^{-b(\Delta t)} \implies L^{\star} = N^{\star} \left[\frac{\Delta t}{365\cdot 24} + \frac{2\Delta\varepsilon_{\text{tot}}(\tilde{M})}{\dot{\varepsilon}(365\cdot 24\cdot 60\cdot 60)}\right],$												
where Δt - dependent parameters : a_1 a_2 b_1								b_2				
$a(\Delta b)$	$t = a_1 \log(\Delta t) = b_1 \log(\Delta t) = b_1 \log(\Delta t)$	(t+1) + a (t+1) + b	l ₂		-0.4921	3.7089	29 0.	0255	0.754959)		
$\Delta \varepsilon_{t,t}(\tilde{M}) = p_1 \tilde{M} + p_2 \tilde{M}^{p_3}$ with $p_1 = 0.2817$, $p_2 = 0.17649$, $p_2 = 3.11051$												

2.2 Dimensions (mm) of the cruciform weldment specimen³

4.3 Creep-fatigue evaluation results of the cruciform weldment

	$\Delta t = 0 h$				$\Delta t = 1 h$				$\Delta t = 5 h$			
$\Delta \varepsilon^{ ext{tot}}$, %	FEA/LMM		experiments ³		FEA/LMM		experiments ³		FEA/LMM		experiments ³	
	N*	failure	N*	failure	N*	failure	N*	failure	N*	failure	N*	failure
1.0	857	Т	918	Т	430	Т	562	U	278	Т	275	Р
0.6	4062	Т	2499	U	1673	Т	1048	U	967	Т	943	W
0.4	17025	Т	15747	Ρ	6270	Т	6512	U	3168	Т		
0.3	45374	W	38127	Ρ	19776	Т	21488	W	9679	Т		_
0.25	90056	W	66847	Р	52221	Т			26901	Т		_

(U) Specimen failed at the undercut close to the weld toe in the parent plate

- (T) Specimen failed at the weld toe propagating through the HAZ
- (P) Specimen failed in parent plate remote from weld
- (W) Specimen failed in weld metal

6. Conclusions

5.3 Comparison of the observed and predicted N*

2) 3 variants of dwell period - pure fatigue, 1 hour, 5 hours
3) 5 variants of reverse bending moment *M* corresponding to Δε equal to 1.0%, 0.6%, 0.4%, 0.3% and 0.25% of total strain

3. Properties of the steel AISI type 316N(L) at 550°

6.600E-21

6.683

HAZ

- 1) The series of **creep-fatigue analyses** have been implemented with LMM using:
- <u>Ramberg-Osgood material model</u> and corresponding constants to describe plastic strains under saturated cyclic conditions;
- <u>power-law model in "time hardening" form</u> and corresponding constants to describe creep strains during primary creep stage.
- 2) The amount of damage per cycle caused by creep-fatigue interaction is estimated using:
 experimentally defined relation for number of cycles to fatigue failure (N*) dependent on numerically
- defined total strain range for the fatigue damage (ω^{f}); • experimentally defined <u>relation for time to creep rupture (t^{*})</u> dependent on the average stress during dwell period for the creep damage (ω^{cr});
- the <u>average stress</u> during dwell period is defined as a mean value of analytical function for stress during relaxation dependent on elastic follow-up factor (Z), initial stress and time.
- 3) A non-linear **creep-fatigue diagram** is used to define the <u>total damage</u> caused by both creep and fatigue, which can't exceed one ($\omega^{f} + \omega^{cr} \le 1$). Basing upon this interaction, the number of cycles to creep-fatigue failure (N^{*}) is defined.
- 4) Comparison of the observed and predicted cycles to failure with creep-fatigue FEA/LMM for 3 types of experiments shows, that simulation of 9 of total available 11 cases is very close to <u>optimal match</u>. Simulation of other 2 cases produces <u>non-conservative</u> results with factor of difference equal to **1.6**, which is even better than the factor acceptable for engineering analysis equal to **2**.
- 5) Sets of creep-fatigue FEA/LMM results analysis corresponding to 0, 0.5, 1, 2, 5 and 10 hours are fitted by <u>analytical function</u> and used for <u>contour plot</u> of cycles to failure (*N**) depending on dwell period and normalized moment intended for design application.
- 6) Further research will be devoted to parametric studies of the influence of variation of weldment geometrical parameters on the number of cycles to failure (N*) and formulation of a <u>mathematical</u> <u>relation</u> to describe the corresponding dependence.

Acknowledgements

The authors deeply appreciate the EPSRC of the United Kingdom for the financial support in the frames of research grant no. EP/G038880/1, the University of Strathclyde for hosting during the course of this work, and EDF Energy for the experimental data.

References

- [1] Bree J. Elastic-plastic behaviour of thin tubes subjected to internal pressure and intermittent high-heat fluxes with application to fast-nuclear-reactor fuel elements. // In: *Journal of Strain Analysis*, 1967; 2(3): 226-238
- [2] Chen H.F., Chen W. and Ure J. Linear matching method on the evaluation of cyclic behaviour with creep effect. // In: Proc. ASME Pressure Vessels & Piping Conf. (PVP2012). Toronto, Canada: ASME; 2012, July 15-19
- [3] Bretherton I. et al. Reports by AEA Technology plc. and Serco Assurance (Warrington, UK) for British Energy Generation Ltd.: no. R/NE/432 (1998), no. AEAT-3406 (1999), no. AEAT-3406 (2000), no. RJCB/RD01186/R01 (2004)
- [4] Wada Y., Aoto K. and Ueno F. Creep-fatigue evaluation method for type 304 and 316FR SS.
 // In: Creep-fatigue damage rules for advanced fast reactor design. Vienna, Austria: IAEA; 1997, p. 75–86
- [5] Bate S.K. *et al.* Further analyses to validate the R5 volume 2/3 procedure for the assessment of austenitic weldments. // Report for British Energy Generation Ltd. no. *SA/EIG/11890/R002*; Serco Assurance (Warrington, UK); 2005
- [6] Data sheets on the elevated-temperature properties for base metals, weld metals and welded joints of 18Cr-12Ni-Mo-middle N-low C hot rolled stainless steel plates (SUS 316-HP). *NIMS Creep Data Sheet No. 45A*; National Institute for Materials Science; Tsukuba, Japan; 2005
- [7] Ainsworth R.A., editor. R5: An Assessment Procedure for the High Temperature Response of Structures. Procedure R5: Issue 3. British Energy Generation Ltd (Gloucester, UK); 2003

3.3 Low-cycle fatigue endurance⁵ $\log(\Delta \varepsilon^{\text{tot}}) = m_0 + m_1 \log(N^*) + m_2 \log(N^*)^2 \quad \text{and}$ $\log(\Delta \varepsilon^{\text{tot}}) = m_0 + m_1 \log(N^*) + m_2 \log(N^*)^2 + m_2 \log(N^*)^3$

-0.525

1.291E+28

9.768

-) ""0 "		$m_2 \log(10)$	1 103 108(11		
	Zone	C	Quadratic	Cubic			
		parent	MMA weld	parent	MMA weld		
	m ₀	1.73339	1.85169	2.40906	1.93432		
	m ₁	-0.72959	-0.76094	-1.25128	-0.82500		
000	m ₂	0.06170	0.05951	0.19399	0.07585		
	m ₃			-0.01102	-0.00137		