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1. Theoretical Background and the Linear Matching Method
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1.1 Bree diagram with responses to cyclic loading1
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1.2 Fundamentals of the Linear Matching Method2

• belongs to the group of modified elastic modulus methods;
• has the character of a non-linear programming method;
• with each step involves the solution of a linear problem;
• each solution satisfies the condition of force equilibrium;
• non-linear constitutive assumptions are imposed sequentially;
• strain rate histories give rise to equilibrium residual stress fields;
• solution is the minimum of a functional of the strain rate history;
• generates inelastic solutions for the stabilized cyclic state;
• compatible with standard finite element codes, e.g. ABAQUS.

• Life Assessment Methods and Design Codes – R5 Procedure, ASME N47 and RCC-MR
(1980's – today) based on Neuber's Rule

• Conventional incremental (transient) FEA
• Direct Cyclic Analysis (DCA) incorporated into ABAQUS
• Direct Methods using Static or Kinematic Bounding Theorem (Koiter, 1960)

Alternatives to the LMM:

• Modified Modulus Method (MMM) for limit load analysis (Ponter, early 1990’s)
• MMM modified for elastic shakedown analysis (Ponter & Carter, 1997)
• MEM implemented as ABAQUS UMATs  (Ponter & Engelhardt, 2000)
• Linear Matching Method (LMM) implemented in ABAQUS for reverse plasticity

(global shakedown) & ratchet boundary evaluation (Ponter & Chen, 2001)
• LMM further developed to evaluate R5 related parameters (Ponter & Chen, 2005)

Development of the LMM framework:

2. Testing & modelling of cruciform weldment

2.1 Experimental facility and specimen with typical failures3
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2.2 Dimensions (mm) of the cruciform weldment specimen3

2.3 Parameters of the FE-model
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4. Creep-Fatigue Evaluation Procedure

4.1 Creep-fatigue evaluation procedure with time fraction rule4
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4.2 FEA/LMM results corresponding to Δ = 1% and Δ = 5hε ttot
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4.3 Creep-fatigue evaluation results of the cruciform weldment
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X-weld fatigue

X-weld = 1h

X-weld = 5h
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Δεtot,
%

Δt = 0 h Δ = 1 ht Δ = 5 ht

FEA/LMM experiments3 FEA/LMM experiments3 FEA/LMM experiments3

N* failure N* failure N* failure N* failure N* failure N* failure

1.0 857 T 918 T 430 T 562 U 278 T 275 P

0.6 4062 T 2499 U 1673 T 1048 U 967 T 943 W

0.4 17025 T 15747 P 6270 T 6512 U 3168 T — —

0.3 45374 W 38127 P 19776 T 21488 W 9679 T — —

0.25 90056 W 66847 P 52221 T — — 26901 T — —

(U) Specimen failed at the undercut close to the weld toe in the parent plate
(T) Specimen failed at the weld toe propagating through the HAZ
(P) Specimen failed in parent plate remote from weld
(W) Specimen failed in weld metal

5. Analysis of the Obtained Results

5.1 Analytical functions for cycles to failure and residual life

Δt, dwell time (hours)

0 0.5 1 2 5 10 100 1000 10000

1.470528 857 500 430 362 278 223 95 33 8

1.153799 4062 2037 1673 1339 967 746 307 122 42

0.925507 17025 7963 6270 4756 3168 2294 799 308 121

0.777426 45374 24952 19776 14931 9679 6755 1963 635 230

0.691045 90056 63964 52221 40511 26901 18869 5116 1415 434
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5.2 Design contour plot for creep-fatigue durability
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5.3 Comparison of the observed and predicted *N

100

1000

10000

100000

100 1000 10000 100000

optimal match

factor of 2

factor of 1.6

LMM (fatigue)

LMM (Δt = 1h)

LMM (Δt = 5h)

analitic (fatigue)

analitic (Δt = 1h)

analitic (Δt = 5h)

Non-conservative

Conservative

experimental cycles to failure

p
re

d
ic

te
d
 c

yc
le

s 
to

 f
a
ilu

re

5.4 Dependence of FSRF on duration of dwell period7 Δt
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3. Properties of the steel AISI type 316N(L) at 550°
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3.1 Rate-independent cyclic plasticity3
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Zone E (MPa) B (MPa) β σy (MPa)

Parent 160000 1741.96 0.29960 270.662

Weld 122000 578.99 0.10162 307.894

HAZ 154000 1632.31 0.25304 338.731

Deformation plasticity (Ramberg-Osgood model):

3.2 Creep strain and rupture3,6
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Time-hardening power-law: Zone
Primary creep strain Time to creep rupture

A (MPa /h )-n m+1 n m B (MPa h)k k

Parent 6.604E-19 5.769 -0.55 2.172E+26 8.927

Weld 6.597E-23 7.596 -0.5 5.993E+29 10.61

HAZ 6.600E-21 6.683 -0.525 1.291E+28 9.768
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3.3 Low-cycle fatigue endurance5
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Zone
Quadratic Cubic

parent MMA weld parent MMA weld

m0 1.73339 1.85169 2.40906 1.93432

m1 -0.72959 -0.76094 -1.25128 -0.82500

m2 0.06170 0.05951 0.19399 0.07585

m3 -0.01102 -0.00137
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6. Conclusions

1)

2)

3)
≤

4)
cases

cases

5)

6)

The series of have been implemented with LMM using:
and corresponding constants to describe plastic strains under

saturated cyclic conditions;
and corresponding constants to describe creep strains

during primary creep stage.
The amount of damage per cycle caused by is estimated using:

experimentally defined dependent on numerically
defined total strain range for the fatigue damage ( );
experimentally defined dependent on the average stress during
dwell period for the creep damage ;
the during dwell period is defined as a mean value of analytical function for stress
during relaxation dependent on elastic follow-up factor ( ), initial stress and time.

A non-linear is used to define the caused by both creep and
fatigue, which can’t exceed one ( + 1). Basing upon this interaction, the number of cycles to
creep-fatigue failure ( � ) is defined.
Comparison of the observed and predicted cycles to failure with creep-fatigue FEA/LMM for 3 types
of experiments shows, that simulation of 9 of total available 11 is very close to .
Simulation of other 2 produces results with factor of difference equal to ,
which is even better than the factor acceptable for engineering analysis equal to .
Sets of creep-fatigue FEA/LMM results analysis corresponding to 0, 0.5, 1, 2, 5 and 10 hours are
fitted by and used for of cycles to failure ( *) depending on dwell
period and normalized moment intended for design application.
Further research will be devoted to parametric studies of the influence of variation of weldment
geometrical parameters on the number of cycles to failure ( *) and formulation of a

to describe the corresponding dependence.
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