Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Optimal resource allocation in a randomly varying environment

Gurney, William and Middleton, D. (1996) Optimal resource allocation in a randomly varying environment. Functional Ecology, 10 (5). pp. 602-616. ISSN 0269-8463

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

1. We construct a simple strategic population model to investigate optimal allocation of resources (in excess of those required for maintenance) to growth and/or reproduction. 2. Analysis of the model for a constant environment demonstrates that determinate growth (where growth ceases at reproductive maturity) is always the optimal strategy. 3. We conduct numerical competition experiments to investigate optimal allocation in randomly varying environments, under three different noise models. 4. Indeterminate growth (simultaneous growth and reproduction over some of the individual's lifetime) is optimal in varying environments where the variability is intense and on a time-scale comparable with that of an individual's lifetime. 5. The long-run growth rate and the correlation between phenotype biomass and environment are maximized by sucessful competitors in the numerical contests. The presence of a competitor is shown to be an essential component defining the `environment'. Optimization of various fitness measures in a single phenotype situation does not reveal the optimum for the competitive situation.