Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

Robust transceiver design for MIMO relay systems with tomlinson harashima precoding

Millar, Andrew Paul and Weiss, Stephan and Stewart, Robert (2012) Robust transceiver design for MIMO relay systems with tomlinson harashima precoding. In: 2012 Proceedings of the 20th european signal processing conference (EUSIPCO). IEEE, New York, pp. 1374-1378. ISBN 9781467310680

[img]
Preview
PDF
milar12c.pdf
Final Published Version

Download (132kB) | Preview

Abstract

In this paper we consider a robust transceiver design for two hop non-regenerative multiple-input multiple-output (MIMO) relay networks with imperfect channel state information (CSI). The transceiver consists of Tomlinson Harashima Pre-coding (THP) at the source with a linear precoder at the relay and linear equalisation at the destination. Under the assumption that each node in the network can acquire statistical knowledge of the channel in the form of a channel mean and estimation error covariance, we optimise the processors to minimise the expected arithmetic mean square error (MSE) subject to transmission power constraints at the source and relay. Simulation results demonstrate the robustness of the proposed transceiver design to channel estimation errors.