Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Applications of the wave kinetic approach : from laser wakefields to drift wave turbulence

Trines, R. M. G. M. and Bingham, R. and Silva, L. O. and Mendonca, J. T. and Shukla, P. K. and Murphy, C. D. and Dunlop, M. W. and Davies, J.A. and Bamford, R. and Vaivads, A. and Norreys, P. A. (2010) Applications of the wave kinetic approach : from laser wakefields to drift wave turbulence. Journal of Plasma Physics, 76 (specia). pp. 903-914. ISSN 0022-3778

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Nonlinear wave-driven processes in plasmas are normally described by either a monochromatic pump wave that couples to other monochromatic waves, or as a random phase wave coupling to other random phase waves. An alternative approach involves a random or broadband pump coupling to monochromatic and/or coherent structures in the plasma. This approach can be implemented through the wave-kinetic model. In this model, the incoming pump wave is described by either a bunch (for coherent waves) or a sea (for random phase waves) of quasi-particles. This approach has been applied to both photon acceleration in laser wakefields and drift wave turbulence in magnetized plasma edge configurations. Numerical simulations have been compared to experiments, varying from photon acceleration to drift mode-zonal flow turbulence, and good qualitative correspondences have been found in all cases.