Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Optimal multi-objective discrete decision making using a multidirectional modified Physarum solver

Masi, Luca and Vasile, Massimiliano (2012) Optimal multi-objective discrete decision making using a multidirectional modified Physarum solver. In: EVOLVE 2012 International Conference, 2012-08-07 - 2012-08-09.

[img] PDF
Masi_L_Vasile_M_Pure_Optimal_multi_objective_discrete_decision_making_using_a_multidirectional_modified_physarum_solver.pdf
Preprint

Download (205kB)

Abstract

This paper will address a bio-inspired algorithm able to incrementally grow decision graphs in multiple directions for discrete multi-objective optimization. The algorithm takes inspiration from the slime mould Physarum Polycephalum, an amoeboid organism that in its plasmodium state extends and optimizes a net of veins looking for food. The algorithm is here used to solve multi-objective Traveling Salesman and Vehicle Routing Problems selected as representative examples of multi-objective discrete decision making problems. Simulations on selected test case showed that building decision sequences in two directions and adding a matching ability (multidirectional approach) is an advantageous choice if compared with the choice of building decision sequences in only one direction (unidirectional approach). The ability to evaluate decisions from multiple directions enhances the performance of the solver in the construction and selection of optimal decision sequences.