Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Prediction of concrete crack width under combined reinforcement corrosion and applied load

Li, Chun-Qing and Yang, Shangtong (2011) Prediction of concrete crack width under combined reinforcement corrosion and applied load. Journal of Engineering Mechanics, 137 (11). pp. 722-731. ISSN 0733-9399

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

As a global problem for reinforced concrete structures located in a chloride and/or carbon dioxide-laden environment, reinforcing steel corrosion in concrete costs approximately $100 billion per annum worldwide for maintenance and repairs. The continual demands for greater load for infrastructure exacerbate the problem. This paper attempts to examine the whole process of longitudinal cracking in concrete structures under the combined effect of reinforcement corrosion and applied load. A model for residual stiffness of cracked concrete is derived using the concept of fracture energy. It is found that the corrosion rate is the most important single factor that affects both the time-to-surface cracking and crack width growth. The paper concludes that the developed model is one of very few theoretical models that can predict with reasonable accuracy the crack width on the surface of reinforced concrete structures under such a combined effect. The developed model can be used as a tool to assess the serviceability of corrosion-affected concrete infrastructure. Timely repairs have the potential to prolong the service life of reinforced concrete structures.