Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Viscosity coefficients of nematic liquid crystals : II. Measurements of some nematic liquid crystals

Orr, Robert and Pethrick, R. A. (2011) Viscosity coefficients of nematic liquid crystals : II. Measurements of some nematic liquid crystals. Liquid Crystals, 38 (9). pp. 1183-1191. ISSN 0267-8292

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Oscillating plate and rotational viscosity measurements are reported for a series of liquid crystals and include n-p-cyano-p-hexylbiphenyl (K18), 4-n-hepthyl-4′-cyanobiphenyl (K21), ethyl-cyclohexyl-ethyl-6-fluoro – n-propyl-biphenyl (I32), n-propyl-cyclohexyl-ethyl-6-fluoro – n-butyl-biphenyl (I43) and a n-pentyl-cyclohexyl-cyanophenyl : n-heptyl-cyclohexyl-cyanophenyl mixture. Rotational viscosity measurements were carried out over a temperature range from ambient to 90°C. Comparison of the values at a temperature of 5 K above the below the clearing point indicate an odd–even effect as the chain length of the hydrocarbon tail is altered. The principle viscosities η1, η2, η3 and η45were measured using an oscillating plate viscometer and the temperature dependences used to calculate the activation energies for flow in the various directions. The magnitude of the activation energy is shown to change with the length of the hydrocarbon chain. The incorporation of the cyclohexyl group imparts flexibility and reduces the activation energy flow, whilst the presence of the fluoro group increases the interactions between molecules, and this is reflected in higher values of the viscosity. The change of viscosity with alignment angle is explored for two of the systems studied and the fit to theory investigated. The Leslie–Ericksen coefficients are calculated for these systems and discussed in terms of changes in the molecular interactions.