Picture of model of urban architecture

Open Access research that is exploring the innovative potential of sustainable design solutions in architecture and urban planning...

Strathprints makes available scholarly Open Access content by researchers in the Department of Architecture based within the Faculty of Engineering.

Research activity at Architecture explores a wide variety of significant research areas within architecture and the built environment. Among these is the better exploitation of innovative construction technologies and ICT to optimise 'total building performance', as well as reduce waste and environmental impact. Sustainable architectural and urban design is an important component of this. To this end, the Cluster for Research in Design and Sustainability (CRiDS) focuses its research energies towards developing resilient responses to the social, environmental and economic challenges associated with urbanism and cities, in both the developed and developing world.

Explore all the Open Access research of the Department of Architecture. Or explore all of Strathclyde's Open Access research...

Non linear analysis of ship motions and loads in large amplitude waves

Mortola, G. and Incecik, A. and Turan, O. and Hirdaris, S. E. (2011) Non linear analysis of ship motions and loads in large amplitude waves. International Journal of Maritime Engineering, 153 (A2). A81-A87.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A non linear time domain formulation for ship motions and wave loads is presented and applied to the S175 containership. The paper describes the mathematical formulations and assumptions, with particular attention to the calculation of the hydrodynamic force in the time domain. In this formulation all the forces involved are non linear and time dependent. Hydrodynamic forces are calculated in the frequency domain and related to the time domain solution for each time step. Restoring and exciting forces are evaluated directly in time domain in a way of the hull wetted surface. The results are compared with linear strip theory and linear three dimensional Green function frequency domain seakeeping methodologies with the intent of validation. The comparison shows a satisfactory agreement in the range of small amplitude motions. A first approach to large amplitude motion analysis displays the importance of incorporating the non linear behaviour of motions and loads in the solution of the seakeeping problem