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a b s t r a c t

The flow of a Newtonian fluid and a Boger fluid through sudden square–square contractions was inves-
tigated experimentally aiming to characterize the flow and provide quantitative data for benchmarking
in a complex three-dimensional flow. Visualizations of the flow patterns were undertaken using streak-
line photography, detailed velocity field measurements were conducted using particle image velocimetry
(PIV) and pressure drop measurements were performed in various geometries with different contraction
ratios. For the Newtonian fluid, the experimental results are compared with numerical simulations per-
formed using a finite volume method, and excellent agreement is found for the range of Reynolds number
tested (Re2 ≤ 23). For the viscoelastic case, recirculations are still present upstream of the contraction but
we also observe other complex flow patterns that are dependent on contraction ratio (CR) and Deborah
number (De2) for the range of conditions studied: CR = 2.4, 4, 8, 12 and De2 ≤ 150. For low contraction
ratios strong divergent flow is observed upstream of the contraction, whereas for high contraction ratios

there is no upstream divergent flow, except in the vicinity of the re-entrant corner where a localized atyp-
ical divergent flow is observed. For all contraction ratios studied, at sufficiently high Deborah numbers,
strong elastic vortex enhancement upstream of the contraction is observed, which leads to the onset of
a periodic complex flow at higher flow rates. The vortices observed under steady flow are not closed,
and fluid elasticity was found to modify the flow direction within the recirculations as compared to that
found for Newtonian fluids. The entry pressure drop, quantified using a Couette correction, was found to

h num
increase with the Debora

. Introduction

The study of entry-flow problems, in which a fluid flowing
hrough a duct of large cross-section progresses through a con-
raction into a smaller one, has been the subject of numerous
tudies with Newtonian and viscoelastic fluids [1–6]. Besides its
reat usefulness for understanding a variety of real-flow phenom-
na that exists in many engineering applications, such as extrusion
nd injection molding processes, it is also a classic benchmark
ow problem used in computational rheology [7,8]. The majority
f experimental and numerical works found in the literature on
he subject of contraction flows focuses on axisymmetric and/or

lanar (or quasi-planar) arrangements. Planar flow configurations
re particularly amenable for comparison with numerical predic-
ions, since usually three-dimensional (3D) effects are negligible
nd experimental results can be adequately described using com-
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ber for the higher contraction ratios.
© 2009 Elsevier B.V. All rights reserved.

putationally less demanding two-dimensional (2D) simulations.
Axisymmetric contractions are ubiquitous in real-flow problems,
and under steady flow conditions are also less demanding than
full 3D simulations. Numerical research on 3D sudden contractions
is less frequent since these require much more powerful com-
putational resources. However, in some cases of interest, e.g. in
microfluidic contraction geometries, the flow is markedly three-
dimensional due to reduced characteristic aspect ratios [9–11]. In
such cases, a simple 2D approach is often qualitatively inadequate
to describe the flow [12]. Contractions with significant 3D effects
are not only interesting from a fundamental point of view, but
are also useful for validating 3D numerical codes. As such, the
square–square geometry, in which the contraction occurs in two
perpendicular directions, is a candidate for a reference 3D test-case,
since it offers a good compromise between geometric simplicity and
complex 3D flow structure.
Entry flows through square–square contractions (or analogous
configurations) have been documented only in a handful of papers,
which have focused mostly on the flow patterns [13–20]. Some
similarities between the flow through square–square and circular
contractions were reported both in terms of the actual flow and

http://www.sciencedirect.com/science/journal/03770257
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Fig. 1. Experimental set-up. (L, laser diode with cylindrical lens; M, electric motor
with winch; R, reservoirs; S, weight scale; SC, square contraction; T, tubes; VP, vac-
uum pump; VR, vacuum regulator)

Table 1
Axial positions of the pressure ports (P0, P1, P2 and P3). The contraction plane is
located at x = 0.

CR = 2.4 CR = 4 CR = 8 CR = 12

x0 (mm) −152 −152 −153 −154

T
C

F

N
B

P.C. Sousa et al. / J. Non-Newton

n terms of the variation of the strain rates [19–21]. Most experi-
ental and numerical studies typically report results concerning a

:1 contraction ratio (CR) in both directions (although CR = 13.3 has
lso been considered in Ref. [21]). Indeed, this is motivated by the
act that the 4:1 contraction ratio was chosen as a benchmark test-
ase during the 5th International Workshop on Numerical Methods
n non-Newtonian flows [7]. As a result, the flow patterns in this
articular configuration are well documented for Newtonian and
oger fluids [14,15,19]. The flow of viscoelastic fluids through this
ype of contraction presents a rich variety of flow structures span-
ing a number of regimes, such as lip vortex activity, vortex growth,
iverging flow and unstable flow. Despite these advances, a com-
rehensive description of the flow in a square–square contraction,

n which the effects of both geometric and rheological parameters
re analyzed, is still lacking.

In this paper, we move toward this goal by presenting detailed
xperimental results for the flow of Newtonian and Boger fluids
hrough square–square contractions with several different contrac-
ion ratios. Besides reporting global characteristics such as flow
atterns and vortex length, as in previous studies, we also present
article image velocimetry (PIV) measurements, and pressure drop
easurements across the contraction. In addition we study the flow

ehavior in different planes of the geometry, in contrast with pre-
ious work in which only the center plane was analyzed [19,20].
urthermore, we go beyond the previously studied 4:1 contraction
nd examine the effect of contraction ratio, defined as the ratio
etween the width of the large duct and the width of the smaller
uct, on the flow characteristics for a wide range of Reynolds
nd Deborah numbers. The contraction ratio is known to have a
ajor influence on the viscoelastic flow characteristics in converg-

ng configurations, as predicted for axisymmetric [6] and planar
5] contractions. Additionally, we present numerical results of 3D
imulations for Newtonian fluids in the studied geometries.

In the following section the experimental set-up and methods
re briefly described. Fluid characterization is discussed in Sec-
ion 3. The numerical method and governing equations used in the
umerical calculations are briefly outlined in Section 4. In Sections
and 6 we present and discuss in detail the experimental results

or the Newtonian fluid and for the Boger fluid, respectively. Fur-
hermore, the Newtonian results are compared with the numerical
imulations. The final section of this paper summarizes the main
onclusions of this work.

. Experimental set-up and methods

.1. Experimental set-up

Fig. 1 shows a diagram of the experimental set-up. The key part
f the experimental rig is a square column of length L = 1.75 m,
hich is composed of two parts: a fixed square duct, with width

H1 = 24.0 mm, and an interchangeable duct of smaller cross-
ection which fits tightly inside the larger one. The inner width
f the inset square channel can be set to 2H2 = 10.0 mm, 6.0 mm,

.0 mm or 2.0 mm, defining 2.4:1, 4:1, 8:1 and 12:1 contraction
atios, respectively. The upstream and downstream sections are
enoted by subscripts 1 and 2, respectively. The dashed lines in
ig. 1 represent the air circulation lines (vacuum), which are used
o promote the flow.

able 2
omposition of fluids in mass concentrations and density.

luid PAA (ppm) Glycerin (%) Water (

ewtonian – 84.84 15.16
oger 100 90.96 7.52

a The density was measured at 293.2 K.
x1 (mm) +99 +49 +30 +13
x2 (mm) +149 +99 +48 +29
x3 (mm) +249 +149 +98 +47

The left hand-side reservoir (Fig. 1) is suspended in a steel cable
connected to an electric motor, which allows the reservoir to be
moved vertically by approximately 4 m. This reservoir is connected
to the upstream duct by three parallel tubes of different diameters,
while the second reservoir is located on top of a weighing scale
(KERN DS 16k0.2; with readout of 0.2 g and maximum range of
16 kg) and is connected to the downstream duct by a 13 mm internal
diameter tube.

The mass flow rate was set by adjusting the following param-
eters: the difference between the liquid levels in the reservoirs
(attained by moving the vertical position of the left hand-side reser-
voir); the vacuum applied to the right hand-side reservoir using a
vacuum pump (KNF Loboport N811-KT.18); and the diameter of the
pipe that connects the reservoir to the duct (this diameter could be
set to 4, 6 or 15 mm). The value of flow rate was monitored using
LabView v7.1 that records the time and the mass of fluid in the right
hand-side reservoir during the experiment. We note that we do not
use any regulating valve to adjust the flow rate in order to avoid
degradation of the fluid by passing through narrow orifices.

The experimental set-up was designed to provide a versatile
mechanism that allows varying the contraction ratio, modifying the

flow rate and adjusting the optical laser/camera arrangement in a
simple and straight-forward way. For the purpose of flow visualiza-
tion, the experimental set-up was made of transparent acrylic and
the optical measurement system was adjusted to comply with the
requirements of streak-line photography and PIV as described in

%) Kathon (ppm) NaCl (%) �a (kg/m3)

25 – 1221
28 1.50 1249
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Fig. 2. Temperature effect on the shear viscosity for the Newtonian fluid stud-
ied (�) and comparison with a 85 wt.% glycerol solution (�), reported in Ref. [24]
(T0 = 293.2 K).
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Table 3
Linear viscoelastic spectra for the Boger fluid at the reference temperature
(T0 = 293.2 K).

Mode k �k (s) �k (Pa s)

1 4.0 0.225

T
C

N
�
�

ig. 3. Material functions for Boger fluid at reference temperature (293.2 K) in steady
open symbols) and dynamic (solid symbols) shear flow.

ections 2.2.1 and 2.2.2, respectively. To allow for pressure drop
easurements (detailed in Section 2.2.3), four ports were posi-

ioned axially along the contraction geometry. One of the ports (the
eference port, P0) was located upstream of the contraction plane
x = 0), and the remaining ports (P1, P2 and P3) were located down-
tream of the contraction at positions that depend on the size of
he smaller duct. Table 1 displays the precise port locations for each
ontraction ratio considered.

.2. Experimental techniques

.2.1. Streak-line photography
A detailed study of the flow patterns was carried out using long

ime exposure streak-line photography. The fluid was seeded with

ighly reflective PVC tracer particles 10 �m in diameter, at a con-
entration of approximately 30 ppm. The flow was continuously
lluminated using a 635 nm 5 mW laser diode (Vector, model 5200-
0) with a cylindrical lens incorporated in order to transform the
pot laser beam into a light sheet that illuminates the plane under

able 4
haracteristics of the two meshes used for each contraction ratio studied.

CR = 2.4 C

M40 M80 M

C 82,000 656,000 5
xmin/(2H1) 2.08 × 10−2 1.03 × 10−2 1
ymin/(2H1) = �zmin/(2H1) 1.99 × 10−2 9.93 × 10−3 1
2 0.4 0.04
3 0.04 0.014
Solvent – 0.367

study. The streak-line images were captured using a digital camera
(Canon EOS 30D) equipped with a macro lens (Canon EF100 mm,
f/2.8) placed perpendicularly to the laser light sheet. The exposure
time was varied depending on the flow conditions, ranging from
O(1 s) up to O(103 s).

Most streak-line images were taken at the center plane, i.e. mid-
way between the front and the back wall of the duct section. In
some cases, streak-line images were also obtained at different par-
allel planes, which required simultaneous adjustment of the light
source and the camera. This was accomplished using a manual 2D
traverse and a dial comparator with a relative positioning precision
of ±0.01 mm.

2.2.2. PIV
Particle Image Velocimetry was used to measure the velocity

field in the vicinity of the contraction. The position of the opti-
cal components, such as the laser and the camera, is similar to
that used for flow visualizations. However, PIV imaging requires
very short exposure times compared with streak-line photography
which typically uses exposure times on the order of seconds.

A doubled pulsed Nd:YAG laser, with a maximum energy of
50 mJ (Solo PIV III from New Wave Research), combined with appro-
priate optical components, produces a light sheet that illuminates
the measurement plane. A digital CCD camera (Flow Sense 2M from
Dantec Dynamics coupled with a Nikon AF Micro Nikkor 60 mm
f/2.8D lens), running on double frame mode and positioned per-
pendicularly to the light sheet, was used to acquire the images. The
time interval between each frame was adjusted according to the
flow rate, the interrogation area, and the section of the flow being
analyzed.

The velocity field was determined by processing the images
with FlowManager v4.60 software, using a cross-correlation algo-
rithm to generate a two-dimensional velocity vector map for
each image pair. Subsequently, the velocity field is submitted to
a validation process using a moving average criterion. This pro-
cess is carried out for a minimum of 60 double images for each
steady-state experiment and an averaged velocity field is deter-
mined. In order to increase the accuracy of PIV measurements
when the variation of velocity throughout the region of interest
is high, the flow region was divided in smaller sub-regions and
PIV measurements were performed independently for each sub-
region using an appropriate time between frames according to

the local velocities. The full velocity field could then be recon-
structed by compiling the data obtained for each sub-region. A
thorough discussion of the PIV technique can be found in Refs.
[22,23].

R = 4 CR = 8

40 M80 M40 M80

1,000 408,000 83,300 652,800
.31 × 10−2 6.25 × 10−3 7.50 × 10−3 3.75 × 10−3

.25 × 10−2 6.25 × 10−3 7.50 × 10−3 3.75 × 10−3



P.C. Sousa et al. / J. Non-Newtonian Fluid Mech. 160 (2009) 122–139 125

F
t

2

u
w
s
o
d
s
r

ig. 4. Mesh M40 used in the numerical simulations of the flow through 4:1 con-
raction and identification of the coordinate system.

.2.3. Pressure drop measurement
The pressure drop across the contraction region was measured

sing Honeywell 26PC differential pressure sensors (26PCA FA6D)
hich can cover a differential pressure range of ±6.9 kPa. Each
ensor is connected to the reference port P0, located upstream
f the contraction plane, and one of the following ports located
ownstream of the contraction: P1, P2 or P3 (cf. Table 1). For the
teady-state experiments, the transient output of the sensors was
ecorded until the steady value of pressure drop was reached. The

Fig. 5. Experimental and numerical streak lines at the center plane of the square
Fig. 6. Effect of the Reynolds number on the vortex length at the center plane of
the square/square contraction for CR = 2.4 (�), CR = 4 (©) and CR = 8 (�). Comparison
with numerical calculations in mesh M80 (solid lines).
data was acquired through a data acquisition card (NI USB-6218,
National Instruments) using LabView v7.1. Prior to use, the sen-
sors were calibrated using a static column of water for the whole
differential pressure range.

/square contraction for different contraction ratios and Reynolds numbers.



126 P.C. Sousa et al. / J. Non-Newtonian Fl

F
d

3

fl
T

( )

F
t

F

ig. 7. Experimental (left side) and numerical (right side) projected streak lines at
ifferent planes, for Re2 = 3.82 of the 8:1 square/square contraction.

. Fluid characterization
In the experiments we used either a Newtonian fluid or a Boger
uid. A summary of the composition of the fluids is given in Table 2.
he fluids were characterized using an MCR301 shear rheometer

ig. 8. Numerically predicted streak lines for Re2 = 2.36 at (a) the center plane (EFGH) and (
he three-dimensionality of the flow.

ig. 9. Axial velocity profiles at the center plane for CR = 4 and Re2 = 10.3 at (a) x/(2H1) = 0
uid Mech. 160 (2009) 122–139

(Anton Paar), and the density (�) was measured using a hydrometer
(readability of 0.001 kg/m3; range 1200–1300 kg/m3). Details of the
rheological measurements are given in Sections 3.1 and 3.2 for the
Newtonian and the Boger fluid, respectively.

3.1. Newtonian fluid

The Newtonian fluid used in this work was a solution of glyc-
erol (84.8%) and water (15.2%). A biocide (Kathon LXE, Rohm and
Haas) was added to the solution at a concentration of 25 ppm in
order to minimize bacteriological growth, and thus prevent fluid
degradation.

The temperature effect on the steady shear viscosity was mea-
sured using the shear rheometer with a cone-plate fixture (75 mm
in diameter and 1◦ angle), for temperatures ranging from 288.2 K
to 303.2 K. The results are shown in Fig. 2 for the Newtonian fluid
and comparison is made against a 85% aqueous solution of glycerol
as reported in Ref. [24].

The dependency of the shear viscosity on the temperature can
be properly described by an Arrhenius equation in the form:
ln(aT ) = �H

R

1
T

− 1
T0

(1)

where �H represents the activation energy for flow, T0 the refer-
ence absolute temperature (293.2 K), R the universal gas constant

b) diagonal plane (ABCD). In (c) some path lines are illustrated to better demonstrate

.15 in the downstream channel and (b) x/(2H1) = −0.75 in the upstream channel.
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Fig. 10. Experimental axial velocity profiles (symbols) along the centerline at the
c
p

a

a

i
T
a
t
t
t

linear viscoelastic behavior of the fluid. The value of the solvent
viscosity (� = 0.367 Pa s) of the three-mode model was chosen
enter plane for (a) CR = 2.4, (b) CR = 4 and (c) CR = 8 and comparison with numerical
redictions (lines) in mesh M80.

nd aT the shift factor, usually defined as [25]:

T = �(T)
�(T0)

T0

T

�0

�
(2)

n which �(T0) is the shear viscosity at the reference temperature
0, �(T) is the shear viscosity at a given temperature T, while �0
nd � are the fluid densities at the reference temperature and at

emperature T, respectively. For the range of measurements, the
emperature variation is limited and small enough to consider that
he fluid density and the ratio T0/T do not change significantly. Thus,
Fig. 11. Experimental (symbols) and numerical (lines) profiles of the axial velocity
for CR = 4 and Re2 = 10.3 at y = 0 and z = ±kH1 (or z = 0 and y = ±kH1), where (�) k = 0;
(©) k = 0.25; (�) k = 0.50; (�) k = 0.75; and ( ) k = 0.92.

the shift factor becomes [25]:

aT = �(T)
�(T0)

(3)

A fit of the experimental data to the Arrhenius equation (also shown
in Fig. 2) demonstrates quantitatively the dependency of the shear
viscosity with the temperature for the Newtonian fluid. The shear
viscosity for the Newtonian fluid at the reference temperature is
�(T0) = 0.0982 Pa s and �H/R = 5580 K.

3.2. Boger fluid

The Boger fluid was prepared by dissolving a small amount of
PAA (100 ppm) into a Newtonian fluid of moderate viscosity. The
shear viscosity (�) and the first normal-stress difference coefficient
(� 1) were measured in steady shear flow, and the storage and loss
moduli (G′ and G′′) in dynamic shear flow. A cone-plate geometry
with 50 mm diameter and 2◦ angle was used.

The steady shear tests were carried out for temperatures in
the range between 283.2 K and 303.2 K. The shift factors aT were
determined and �H/R was calculated to be 6780 K using 293.2 K
as the reference temperature. Fig. 3 displays the shear viscosity,
�, as a function of the shear rate for the reference temperature,
T0 = 293.2 K. The shear viscosity of the Boger fluid is approximately
constant for the whole range of shear rates tested (0.7 s−1 ≤ �̇ ≤
100 s−1). Also shown in this figure is the first normal-stress differ-
ence coefficient (� 1). For a critical shear rate between 20 s−1 and
50 s−1 an elastic instability sets in which originates a strong increase
in the shear and normal stresses [26]. Above this critical shear rate
the rheological measurements are not meaningful. We also show
in Fig. 3 the dynamic shear data measured under small amplitude
oscillatory shear (SAOS) flow, namely the dynamic shear viscosity
(�′) and 2G′/ω2 vs. ω.

Since a single-mode model is not able to fit G′ and �′ accurately
over the whole range of measured frequencies, instead a multi-
mode model is used. The details of linear viscoelastic spectrum
determined at T0 = 293.2 K are listed in Table 3. The predictions
using the three-mode model are overlapped with the experiments
in Fig. 3 (solid lines) and it is clear that, within the measured fre-
quency range, a three-mode model is adequate to represent the
solvent
to match the shear viscosity of the N91 Newtonian fluid used by
Alves et al. [19], which has a composition equivalent to the Boger
fluid used here except, obviously, the N91 fluid contains no PAA.
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Fig. 12. Effect of elasticity on the flo

Using the parameters of the three-mode model presented in
able 3, an average relaxation time can be calculated as:

= 1
�p

∑
k /= solvent

�k�k (4)

here �p =
∑

k /= solvent�k, leading to � = 3.29 s. This average relax-
tion time will be used throughout this work in the determination
f the Deborah number.

. Numerical method and governing equations
The governing equations for steady, laminar flow of an incom-
ressible fluid are those expressing the conservation of mass and
omentum [25]:

· u = 0 (5)
erns at the center plane for CR = 2.4.

�

[
∂u
∂t

+ u · ∇u

]
= −∇p + ∇ · � (6)

where u is the velocity vector, � the density of the fluid, t the time,
p the pressure and � the extra stress tensor, defined as the sum of a
Newtonian solvent and a polymeric solute contribution (� = �s + �p).

For Newtonian fluids, �p = 0 and the Newtonian solvent compo-
nent �s is expressed by:

�s = �s(∇u + ∇uT) = 2�sD (7)

where �s is the constant solvent viscosity.

The set of governing equations, i.e. the mass and momentum

conservation given by Eqs. (5) and (6), together with the constitu-
tive equation for Newtonian fluids (Eq. (7)) are solved numerically
using a fully-implicit finite volume method as explained in detail
by Oliveira et al. [27].
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Fig. 13. Effect of elasticity on the flo

The governing equations are discretized in time over a small
ime step (�t) and in space by integration over control volumes (CV)
sed to divide the computational flow domain. The time deriva-
ive is discretized with an implicit first-order Euler scheme, while
he diffusive terms are discretized with central differences. For
ccurate discretization of the advective terms we use the CUBISTA
igh-resolution scheme [28].

All numerical calculations were carried out using computational
eshes representing the full wall-to-wall geometries. The over-

ll dimensions of the square–square contractions are identical to
hose used experimentally (cf. Section 2.1), except the inlet and
utlet planes that were located away from the region of interest

at x/(2H1) = −25 and x/(2H1) = +25, respectively), so that fully-
eveloped flow conditions were enforced.

The computational domain was structured in orthogonal blocks
omposed by non-uniform cells. For each contraction ratio stud-
ed (2.4:1, 4:1 and 8:1), two meshes were used to map the
terns at the center plane for CR = 4.

square–square contraction in order to assess the accuracy of
the numerical solutions. The coarse mesh (M40) has 40 cells
in the largest duct along each of the two directions normal to
the flow. The refined mesh (M80) has twice more cells in each
of the three directions. Table 4 summarizes the characteristics
of the meshes: the total number of cells (NC) and the dimen-
sions of the smaller cell in the mesh, normalized by the width
of the upstream duct, 2H1, for the range of contraction ratios
studied.

Fig. 4 shows a three-dimensional representation of the
coarse mesh (M40) used to simulate the 4:1 contraction
ratio geometry. Clustering of cells near the re-entrant cor-

ners (cf. Fig. 4) was imposed in order to achieve higher
accuracy in these regions, where the velocity and stress
gradients are high. We have also included in Fig. 4 some
important variables and notation used throughout the
text.
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. Newtonian fluid flow

The study of the flow of a Newtonian fluid through 3D

quare–square contractions was carried out for three differ-
nt contraction ratios: CR = 2.4, 4 and 8. In this section we
resent the experimental and numerical results of flow pat-
erns, vortex size and velocity field. The results were obtained
xperimentally using the Newtonian fluid and were simulated
terns at the center plane for CR = 8.

numerically using the computational meshes presented in Section
4.
5.1. Flow patterns and vortex length

The patterns generated by the Newtonian fluid flowing through
the square–square contractions are presented in Fig. 5. For each
CR, the streak lines obtained experimentally and the correspond-
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ng numerical predictions are shown at the center plane (y = 0 or
= 0) for two different Reynolds numbers, here defined in terms of
ownstream variables:

e2 = �U2(2H2)
�

(8)
or the range of contraction ratios and Re2 studied, we observe the
ormation of a vortical structure upstream of the contraction near
he far corner, i.e. corner vortex (cf. schematics in Fig. 4), which is
n agreement with previous studies in square–square contractions
14,15,19].
terns at the center plane for CR = 12.

In Fig. 6 we show the variation of the vortex length, xR, defined
as the distance between the contraction plane and the top of
the recirculation (cf. sketch in Fig. 4), with the Reynolds num-
ber for the three contraction ratios studied. The vortex length
was measured at the center plane and its value was normal-
ized using the width of the upstream duct, 2H1. Note that

the characteristic dimension used in the Reynolds number is
the width of the downstream channel, 2H2, which is different
for each contraction ratio. We see that, for all CR, the experi-
mental results are well predicted by the numerical simulations
(cf. Fig. 6).
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Fig. 16. Streak line images at different planes of the squ

For low Reynolds numbers (Re2 ≤ 0.5), the dimensionless vor-
ex length, xR/(2H1), determined numerically asymptotes to a
lateau which is slightly dependent on the CR: xR/(2H1) = 0.142 for
R = 2.4; xR/(2H1) = 0.163 for CR = 4 (in agreement with Ref. [19]);
R/(2H1) = 0.174 for CR = 8. The dependence of the plateau value of
he vortex length on the contraction ratio was found to be non-
inear, analogously with the findings of Alves et al. [5] and Oliveira
t al. [6] for planar and axisymmetric contractions, respectively.

owever, under creeping flow conditions the value of xR/(2H1)
ill become independent of CR for very high contraction ratios.

or higher Reynolds number (Re2 ≥ 0.5), the length of the vortex
ecreases with increasing inertia for the three contraction ratios

nvestigated.
quare contraction for De2 = 67.9, Re2 = 0.264 and CR = 8.

Even though the flow inside the corner vortex looks bi-
dimensional, in reality it exhibits a complex behavior, showing
a 3D open vortical structure upstream of the contraction. This
type of open 3D recirculation has been observed previously for
a square–square contraction with CR = 4 [19] and for 3D planar
expansions [11,29]. To better illustrate the flow inside the vortical
structure, streak-line images were taken at different planes. Fig. 7
shows the experimental and numerical streak-line projections in

four different planes at several locations between the center plane
and the wall plane for CR = 8. Due to the three-dimensionality of
the flow within the contraction, the streak-line images obtained
experimentally, with the exception of that at center plane, cor-
respond to the projected path lines of the PVC particles on the
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ig. 17. Normalized vortex length as function of Wi for all contraction ratios studied.
n the inset, the normalized vortex length is presented as a function of Deborah
umber.

lluminated plane. Additionally, in Fig. 8 we compare the streak
ines at the center plane and at the diagonal plane predicted numer-
cally.

The streak-line projections in a number of planes demonstrate
hat the particles in the upstream square duct enter the flow recir-
ulation at the diagonal plane and exit at the center plane close
o the re-entrant corner where they proceed into the downstream
uct. The structure of these recirculations is open and three-
imensional, similar to that observed experimentally and predicted
umerically for Newtonian fluid flows through 3D sudden expan-
ions [11,29,30]. Furthermore, the flow is symmetric relative to the
wo center planes (y = 0 and z = 0) and to the two diagonal planes
y = ±z) due to the symmetry of the geometry. Fig. 8c (adapted from
ef. [19]) shows an overview of the 3D particle trajectories of a New-
onian fluid under low Reynolds number flow conditions. Under
teady-state flow conditions, the recirculating vortex structures
evelop and the particles flowing close to the wall along the diag-
nal plane (ABCD) enter the corner vortex, rotate toward its center,
nd then drift to the center plane (EFGH). After rotating toward the
ortex periphery at the center plane, the particles exit toward the
ownstream duct, near the re-entrant corner as described in detail

n Ref. [19].

.2. Velocity field

In Fig. 9, we show the axial velocity profiles along the spanwise
irection measured downstream and upstream of the 4:1 contrac-
ion. The position represented in the abscissa is normalized using
he width of the corresponding duct and the axial velocity was
caled with the relevant average velocity. For clarity, we also show
s inset a diagram of the location where the profiles were taken.

In the downstream channel close to the centerline (y/(2H1) = 0 in
ig. 9a), where the maximum velocity is reached, the coarse mesh
M40) describes the experimental results with a maximum rela-
ive error of approximately 5%, but the agreement is significantly
mproved by using the refined mesh (M80). In this case, the rela-
ive error between the numerical and experimental values becomes
egligible, within the experimental error. In the upstream chan-
el (Fig. 9b), the average velocity is 16 times smaller than that in
he downstream channel. In this case, the two meshes used in the
umerical calculations provide similar results, and the experimen-

al velocity profile is well captured. Since the maximum relative
rror incurred when using the coarse mesh is small, mesh M40
ight be useful when simulation time is a constraint, because the

PU time is substantially smaller than when using the M80 mesh.
ote that the M80 mesh has eight times more cells than mesh
uid Mech. 160 (2009) 122–139 133

M40 and therefore CPU times are about one order of magnitude
higher. The small differences observed between the experimental
(or numerical) results and the analytical solution in Fig. 9a are due
to the fact that at that axial location the fully-developed velocity
profile is not yet observed since it is too close to the entrance of
the contraction. This is evident in Fig. 10b, where we can observe
that at x/(2H1) = 0.15 (x/(2H2) = 0.60) the centerline velocity is still
below the fully-developed value.

Fig. 10 depicts the effect of inertia on the axial velocity profile
along the centerline (y = 0 and z = 0) for three values of CR. These
experimental profiles display some scatter in the vicinity of the con-
traction plane, due to a shade that forms at the contraction plane
when the laser light sheet illuminates the channel, which reduces
the visibility of tracer particles, therefore leading to a reduction of
the precision of the PIV results in this region of the flow. Never-
theless, we can see that the fluid accelerates as it approaches the
contraction and an increase in Re2 leads to a delay in the increase of
the dimensionless velocity along the centerline and it takes longer
for the flow to fully develop downstream of the contraction plane.
The agreement between the experimental and numerical results is
again very good for all CR.

The axial velocity profile along the streamwise direction for
various lines y = 0 and z = kH1 (or identically for z = 0 and y = kH1)
where k = 0, 0.25, 0.50, 0.75 and 0.92, is shown in Fig. 11. As
expected, the magnitude of the axial velocity component increases
as we move from the wall to the center plane. The three profiles
closer to the wall show a velocity decrease along the streamwise
direction as the fluid approaches the contraction region due to
the presence of the contraction plane wall at x = 0. At the cen-
ter plane, the fluid accelerates towards the contraction and the
maximum strain rate is attained. For the plane z/H1 = 0.25, which
is coincident with the downstream channel wall, the profile dis-
plays an interesting behavior: there is a significant acceleration
toward the contraction, followed by an abrupt decrease as we
move towards the wall at the contraction plane. The velocity
profiles obtained at planes away from the center plane and in par-
ticular at the plane z/H1 = 0.25 reveal the flow structure in the
recirculation zones. Again good quantitative agreement between
experiments and numerical simulations was found, thus demon-
strating the good accuracy of the experimental technique, which
will also be applied to the flow of Boger fluids in the next sec-
tion.

6. Boger fluid flow

The study of the flow of a Boger fluid through 3D square–square
contractions was carried out for four different contraction ratios,
CR = 2.4, 4, 8 and 12. The effect of Deborah number and contrac-
tion ratio on the flow patterns is examined in detail and, when
appropriate, the corresponding vortex size is quantified. Further-
more, the velocity fields are measured at the center plane and at
additional parallel planes closer to the wall. In this section we also
present the experimental results of pressure drop across the con-
traction.

6.1. Flow patterns and velocity field

The effect of Deborah number on the flow patterns of the
Boger fluid are illustrated in Figs. 12–15 for a range of contraction
ratios. The photographs were taken at the center plane using the

streak-line photography technique described in Section 2.2.1. To
quantify the elastic effects we define the Deborah number based
on downstream flow conditions and on the average relaxation time
obtained by shear rheology as quantified in Section 3.2 (� = 3.29 s),
De2 = �U2/H2. Experimentally, De2 was changed by varying the
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ig. 18. Normalized axial velocity contour plot (a) and vector map (b) for De2 = 66
mage (c) and streamlines obtained by integration of the velocity field (d) for the sa

ow rate in the range 1.02 × 10−8 m3/s ≤ Q ≤ 1.43 × 10−5 m3/s. Over-
ll, fluid elasticity enhances the formation of complex structures
pstream of the contraction and as the flow rate increases, a number
f different flow type regions can be identified, such as: Newtonian-
ike flow; lip vortex activity, vortex growth and diverging flow; and
nstable flow.

At low Deborah number flows, viscous effects predomi-
ate and Newtonian-like patterns are observed, with concave-
haped corner vortices forming upstream of the contraction
Figs. 12a, 13a, 14a and 15a). Initially, as De2 increases, the vortex
hape and size do not seem to change significantly but as De2 is

ncreased further, elastic effects become significant. In addition to
he corner vortex a weak lip vortex (cf. sketch in Fig. 4) develops for
R = 4, 8 and 12 at a Deborah number (De2 ∼ 10) which is approxi-
ately independent of the contraction ratio (Figs. 13b, 14b and 15b).

he formation of lip vortices close to the re-entrant corner has also
= 0.127 and CR = 12 measured experimentally using PIV. Experimental streak line
w conditions.

been discussed in Refs. [14,15,19] for flows of Boger fluids in 4:1
square–square contractions.

At high flow rates (Deborah numbers), elastic effects are
enhanced and eventually lead to a change of the flow direction
in the recirculations, i.e. the direction of fluid motion inside the
vortices is the opposite of what is seen for lower flow rates (i.e.
lower Deborah numbers) and for Newtonian fluids. This is observed
for De2 �35, 15, 25 and 30 for CR = 2.4, 4, 8 and 12, respectively.
In Fig. 16, we show the streak-line images obtained at different
planes by varying the distance from the center plane to the wall
plane for CR = 8 and De2 = 67.9. We can see that the tracer particles

enter the corner vortex through the center plane contrary to the
observations with the Newtonian fluid in which the particles enter
the recirculation through the diagonal plane and exit through the
central plane, as shown in Fig. 8. The reversal of the flow pattern
was not reported for the Boger fluid studied in Ref. [19] but was
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bserved and predicted numerically for shear-thinning fluids [20].
herefore, we conclude that shear-thinning behavior is not neces-
ary to produce reversal of the flow in the recirculation and that the
ow inversion is due to strong elastic effects and in particular due
o the high values of the extensional viscosity, as discussed in Ref.
20].

The size of the corner-vortex structure is found to depend
on-monotonically on the Deborah number, in resemblance with
revious observations in 4:1 axisymmetric contractions [26] and
:1 square–square contractions [19]. Since in the region just
pstream of the contraction the flow is highly extensional, we
an define a Weissenberg number based on the relaxation time
nd on the estimated strain rate along the centerline, Wi = �ε̇ ∼=
(U2,c − U1,c)/H1 ∼= 2.1 [(1 − 1/CR2)/CR] �U2/H2 (note that for a
quare channel the centerline velocity of a fluid with constant
hear viscosity is nearly 2.1 times the average velocity in the chan-
el: U2,c/U2 = U1,c/U1 ≈ 2.1), where U1,c and U2,c are the centerline
elocities on the upstream and downstream channels, respectively.
or square channels we can easily convert the Deborah number
efined earlier in this section into a Weissenberg number: Wi =
.1[(1 − 1/CR2)/CR]De2. The variation of the dimensionless vortex

ength (normalized with the upstream channel width, 2H1) as func-
ion of Wi is shown in Fig. 17 for the range of contraction ratios
ested. The vortex features observed in low (CR = 2.4 and 4) and high
CR = 8 and 12) contraction ratio geometries are distinct. The curves
or high contraction ratios overlap when plotted as a function of

i (or De2/CR), in accordance with the scaling results of Alves et al.
5] and Oliveira et al. [6] for planar and axisymmetric geometries,
espectively. In these cases, De2 enhances vortex growth and the
ow features in the far corner area are only affected by upstream
vents [6]. Thus, the behavior for different CR is similar and the
urves coincide for high CR. For the low contraction ratios, the vor-
ex growth regime is preceded by a decrease in vortex size until a
inimum size is reached for De2 ∼ 30 (cf. inset in Fig. 17). As this
eduction takes place, the shape of the vortex changes and becomes
convex” (cf. Figs. 12c, 12d and 13e).

In the vortex growth regime, the flow behavior in low and high
ontraction ratio geometries is distinct as pointed out previously.

ig. 20. Axial velocity profiles along the centerline for (a) CR = 2.4, (b) CR = 4, (c) CR = 8 an
or a Newtonian fluid under creeping conditions.
Fig. 19. Axial velocity profiles along the streamwise direction for De2 = 62.3,
Re2 = 0.254 and CR = 8, at y = 0 and z = ±kH1 (or z = 0 and y = ±kH1), where (�) k = 0;
(©) k = 0.125; (�) k = 0.250; ( ) k = 0.500; and (×) k = 0.750.

For low contraction ratios (CR = 2.4 and 4), an increase in the flow
rate causes diverging streamlines to appear upstream of the con-
traction (cf. Fig. 13d). This counterintuitive feature, which is related
to the extensional behavior of the flow, has also been observed
for viscoelastic fluids (both for shear-thinning and Boger fluids)
in converging flows with different geometric characteristics (e.g.
Refs. [3,31–34]). The interested readers are referred to the works
of Cable and Boger [35–37] for a comprehensive illustration of this
flow regime and to the work of Alves and Poole [38] for a discus-
sion of this phenomenon and the conditions under which it arises.
This diverging pattern of the flow streamlines is accompanied by
a significant increase of the vortex length for De2 �30 (CR = 4) and
De �50 (CR = 2.4) (cf. inset of Fig. 17).
2

For higher contraction ratios (CR = 8 and 12), we observe the
development of a large lip vortex (as a result of the engulfment of
the corner vortex by the lip vortex) with a convex shape that occu-
pies the whole wall from the re-entrant corner to the far corner.

d (d) CR = 12. The symbols refer to PIV data, while the curves are from simulations
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ig. 21. (a) Streak line images of the unstable flow taken at the center plane of the 1
scillation scaled as a function of the Deborah number for CR = 4, CR = 8 and CR = 12.

he diverging streamlines seen for low CR are not observed here.
owever, concurrently with the vortex growth regime, the flow
xhibits another remarkable feature (De2 �30): the streak lines
eneath the main vortical structure close to the re-entrant corner
re locally strongly divergent and exhibit a bent-elbow shape (cf.
igs. 14e and 15e) almost as if the fluid had to detour around some
mall “invisible obstacle”. Such sharp divergent streamlines are not
bserved for lower CR, at least not for the range of flow conditions
tudied. In Fig. 18, we show a zoomed view of this flow feature at
he center plane, which includes both results of flow visualization
nd PIV. Fig. 18a and b shows the velocity field in two different
orms, as a contour plot and as a vector plot, respectively. The tech-
ique employed is able to capture the flow feature in detail within
large area of interest. To further attest the validity of the PIV
easurements we compare the streak lines obtained by streak-line

hotography (Fig. 18c) and those obtained from integration of the
elocity field obtained using PIV (Fig. 18d). Even though the streak
ines obtained using the PIV technique are not as smooth near the
ontraction plane, good agreement is observed between the two
echniques.

In Fig. 19, we show the axial velocity profile along the stream-
ise direction in five different lines (y = 0, z = kH1 or z = 0, y = kH1
here k = 0, 0.125, 0.25, 0.5 and 0.75) to highlight the sudden axial

elocity increase as the fluid moves very close toward the contrac-
ion plane (x/(2H1)�−0.05) for the planes z/H1 = 0.125 and 0.25 (cf.

nset Fig. 19). This characteristic of the velocity profiles, which is
ot observed for Newtonian-like flow, is a consequence of the pres-
nce of localized diverging–converging streamlines in this region.
n addition, we highlight the three-dimensionality and symmetry of
he flow under these conditions – the profiles for different z-planes
uare/square contraction for De2 = 138 and Re2 = 0.255; (b) normalized frequency of

shown here are in all similar to the profiles in the corresponding
y-planes.

The effect of the Deborah number on the profiles of the stream-
wise velocity along the centerline (y = 0 and z = 0) is shown in Fig. 20
for the four contraction ratios studied. At low De2, the profiles
resemble those obtained with a Newtonian fluid under creeping
flow conditions. Upstream of the contraction, the fluid is seen to
accelerate as it approaches the contraction (x/(2H1)�−0.2) and
the profiles may exhibit a velocity overshoot in the region of the
contraction plane (x/(2H1) ≈ 0), that increases significantly with
increasing De2. For the lower contraction ratios (CR = 2.4 and 4),
when divergent streamlines are observed a velocity undershoot
upstream of the contraction (−0.6� x/2H1 �0) is clearly visible,
in agreement with Refs. [38,39]. In Fig. 20 we also include the
velocity profile obtained numerically for the Newtonian fluid under
creeping flow conditions to highlight that larger De2 and lower CR
strengthen the diverging flow and as a result the undershoot effect
on the velocity profile is more pronounced.

As De2 increases even further the flow eventually becomes
unstable due to an elastic instability (cf. Figs. 13f, 14f and 15f). In
this regime, the flow is asymmetric and the vortical structures as
a whole are rotating periodically in the azimuthal direction. Addi-
tionally, the degree of asymmetry is seen to increase with increasing
Deborah numbers. Fig. 21a shows a sequence of streak-line images
at the center plane within a cycle of flow oscillation. From films

taken with a video camera at a known frame rate we were able
to measure the frequency of oscillation, f, for different flow rates
within the periodic regime. The normalized frequency of this pro-
cess (�f/CR) was found to be approximately independent of the
Deborah number and of the contraction ratio for high CR, as shown
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rowth and upstream diverging streamlines; 4, simultaneous lip and corner vor-
ices; 5, large lip vortex; 6, large vortex and localized diverging streamlines at the
ontraction entrance; and 7, unstable flow.

n Fig. 21b. In this regime, the diverging streamlines with a bent-
lbow shape are still present even though they are now skewed by
he asymmetry of the flow (cf. Fig. 21a). Analogously to the vor-
ex size results, the frequency results for high CR are consistent
ith each other but are different from those obtained for lower CR

CR = 4).
To summarize, Fig. 22 displays a map of flow patterns

nd their location on the two-dimensional CR–De2 parame-
er space. This map is a result of extensive experiments for

arious contraction ratios and increasing Deborah numbers.
he identified flow features are classified as: Newtonian-like
ow (1) (Figs. 12a, 13a, 14a and 15a); vortex decrease (2)
Figs. 12b and 13c); vortex growth and upstream diverging stream-

ig. 23. Pressure drop across the contraction measured with the Boger fluid for a range o
he open symbols represent the experimental data and the solid lines the corresponding fi
alculations [40] are shown as solid symbols.
uid Mech. 160 (2009) 122–139 137

lines (3) (Figs. 12e, 12f, 13d and 13e); simultaneous lip and
corner vortices (4) (Figs. 13b, 14b and 15b); large lip vortex (5)
(Figs. 14c and 15c); large vortex with localized diverging stream-
lines at the contraction entrance (6) (Figs. 14e and 15e); unstable
flow (7) (Figs. 13f, 14f and 15f).

6.2. Pressure drop

The pressure drop between the reference port upstream of the
contraction and each of the downstream pressure ports were mea-
sured experimentally as a function of the flow rate. These results are
shown in Fig. 23 and can be useful for benchmarking purposes. The
pressure drop vs. flow rate curves display similar characteristics
for all CR studied, with the pressure drop increasing non-linearly
with the flow rate. Also shown in Fig. 23 is the extra pressure drop
(�pextra) caused by the extensional flow in the contraction. The
extra pressure drop is usually associated with vortex enhancement
in contraction flows and is calculated by subtracting the pres-
sure drop due to fully-developed (fd) Poiseuille flow in the duct
upstream (�pfd,u) and downstream (�pfd,d) of the contraction from
the total pressure drop (�pTotal) across the contraction. In our case:

�pextra = �pTotal − �pfd,u − �pfd,d

= �p3 −
∣∣∣dp

dx

∣∣∣
fd,u

∣∣�x0

∣∣ −
∣∣∣dp

dx

∣∣∣
fd,d

∣∣�x3

∣∣ (9)

where the subscripts ‘u’ and ‘d’ refer to upstream and downstream
ducts, respectively.

We have estimated dp/dx in two different ways, one consid-
ering the theoretical values of dp/dx calculated analytically for
fully-developed Poiseuille flow [40] and the other using an experi-
mental value of dp/dx determined from measurements at locations
observe a considerable discrepancy between the curves obtained
using the two approaches referred above: while the experimental
values of �pextra become negative, which is representative of a local
pressure recovery as the fluid goes through the contraction, the esti-

f flow rates and contraction ratios: (a) CR = 2.4, (b) CR = 4, (c) CR = 8 and (d) CR = 12.
t. The extra pressure drop obtained from the experimental data and from analytical
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ig. 24. Couette correction as a function of Deborah number for CR = 8 and CR = 12.
lso shown are the values of the Couette correction obtained numerically for a New-

onian fluid under creeping conditions (De2 → 0). The dashed curve is a guide to the
ye.

ated extra pressure drop from analytical values remain positive
nd increase with increasing flow rate. In fact, for such CR the extra
ressure drop is very small compared to the total pressure drop and
herefore a large degree of uncertainty is associated with the esti-

ation of �pextra since the extra pressure drop is estimated from
xtrapolation of the ideal (fully-developed) pressure profile start-
ng at a distant pressure location (to guarantee that fully-developed
onditions are observed). Additionally, at the locations considered
or the measurements the flow might not yet be fully developed
cf. Fig. 20a and b). For higher contraction ratios (CR = 8 and 12), the
ifferences between the two approaches diminish significantly and

n particular for CR = 12 the results obtained using the two methods
re nearly identical, an indication that for this CR the determination
f the entry pressure drop has reasonable accuracy.

The extra pressure drop is typically reported in dimensionless
orm as a Couette correction, defined as C = �pextra/2�w , where
w is the average downstream fully-developed wall shear stress,
hich for a square duct can be estimated as (−dp/dx)fd,dH2/2. The

volution of the Couette correction with the Deborah number in
he range 60 < De2 < 120 is shown in Fig. 24 for the higher contrac-
ion ratios studied (CR = 8 and 12), illustrating a significant increase
f the Couette correction with De2. Similarly to what was found
or the vortex length, the results for CR = 8 and 12 are identical.

e should emphasize that this parameter is difficult to estimate
xperimentally since it requires the flow to be fully-developed, the
easurements have to be performed far downstream of the con-

raction and therefore any small error on the estimation of the slope
dp/dx)fd,d will have a strong impact on the extrapolated pressure
alues and consequently on the extra pressure drop and Couette
orrection.

. Conclusions

The flow through sudden square–square contractions was char-
cterized experimentally using streak-line photography, pressure
rop measurements and PIV, which can be valuable for benchmark-

ng purposes. Two fluids with different rheological properties were
sed: a Newtonian fluid and a Boger fluid. Additionally, the effect of
he contraction ratio was investigated (CR = 2.4, 4, 8 and 12). For the
ewtonian fluid, in addition to the experimental measurements,

umerical simulations were carried out using a finite volume code.
he experimental results of flow pattern and velocity field were
ound to be in good agreement with the numerical results for the
hole range of conditions tested, validating the experimental tech-
iques.
uid Mech. 160 (2009) 122–139

By taking advantage of the visualizations of the flow patterns
and quantification of the velocity field at various planes along the
spanwise directions (y or z) covering the whole distance from the
wall to the center plane, we have shown that the flow is highly
three-dimensional with open vortex structures forming upstream
of the contraction. Furthermore, we have demonstrated that the
dynamics inside the open recirculations for the Boger fluid at high
Deborah numbers are reversed relative to Newtonian fluid flow.
For the viscoelastic fluid, tracer particles that enter the recircu-
lations from the upstream duct at the center plane exit at the
diagonal plane towards the downstream duct while for the New-
tonian fluid, the opposite process takes place with fluid elements
entering through the diagonal plane and exiting at the center
plane close to the re-entrant corner. For most conditions tested,
the flow was found to be symmetrical relative to the diagonal
planes (y = ±z) as well as to the y-plane and z-plane. However, in
the case of the Boger fluid, the flow becomes time dependent for
high Deborah numbers and in this regime, the flow loses its overall
symmetry.

For the Newtonian fluid, the size of the corner vortex that forms
upstream of the contraction was found to depend not only on the
Reynolds number but also on the contraction ratio of the geometry.
Under low inertial flow conditions, the size of the corner vortex
is nearly independent of Re but as Re is increased, a reduction of
vortex size is observed. For the Boger fluid, the vortex size was seen
to depend on De2 and CR in a complex way, showing two distinct
behaviors according to the contraction ratio:

• For low contraction ratios, the vortex growth regime is preceded
by a decrease in vortex size until a minimum size is reached.
Approximately beyond this minimum, we observe the onset of
divergent streamlines upstream of the contraction, displaying
a bell-shaped form in the region just upstream of the corner
vortex similarly to observations in other converging geometries.
This diverging flow pattern is strengthened for larger De2 and
lower CR and results in an undershoot in the axial velocity pro-
files along the centerline upstream of the contraction entrance.
Furthermore, the fluid at the centerline is seen to accelerate
and the streamwise velocity profiles exhibit a velocity overshoot
in the vicinity to the contraction plane, which is enhanced for
increasing De2.

• For high CR, a monotonous vortex growth was observed, and
the size of the corner vortex is dictated by the scaled Debo-
rah number, De2/CR. For De2 �30, an atypical type of divergent
flow is observed in which the streamlines are strongly diver-
gent, revealing a bent-elbow shape near the re-entrant corner
just beneath the large corner vortex. This atypical divergent
flow also causes an overshoot in the axial velocity profiles at
the centerline, which becomes more pronounced for higher CR.
In addition, as a consequence of the locally divergent stream-
lines, an undershoot is observed in the axial velocity profiles
along the spanwise direction at an axial position which inter-
sects the region where the flow is strongly divergent. The extra
pressure drop was found to increase significantly with the Deb-
orah number, in line with previous works with axisymmetric
contractions.

In summary, when elastic effects become important as De2 is
increased, the flow becomes significantly different from that of
a Newtonian fluid and we have identified a number of distinct
flow type regions which we have mapped in the CR–De2 parameter

space. These regions include, amongst others, a region in which lip
and corner vortices coexist, two distinct regions of diverging flow
which are associated with vortex growth but exhibit different char-
acteristics for low and high contraction ratios, and unstable flow in
which the vortex size varies periodically in time.
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