Picture of industrial chimneys polluting horizon

Open Access research shaping international environmental governance...

Strathprints makes available scholarly Open Access content exploring environmental law and governance, in particular the work of the Strathclyde Centre for Environmental Law & Governance (SCELG) based within the School of Law.

SCELG aims to improve understanding of the trends, challenges and potential solutions across different interconnected areas of environmental law, including capacity-building for sustainable management of biodiversity, oceans, lands and freshwater, as well as for the fight against climate change. The intersection of international, regional, national and local levels of environmental governance, including the customary laws of indigenous peoples and local communities, and legal developments by private actors, is also a signifcant research specialism.

Explore Open Access research by SCELG or the School of Law. Or explore all of Strathclyde's Open Access research...

Differences between Pinus pinea and Pinus pinaster as bioindicators of polycyclic aromatic hydrocarbons

Ratola, Nuno and Amigo, José Manuel and Oliveira, Monica and Araújo, Rita and Silva, José A. and Alves, Arminda (2011) Differences between Pinus pinea and Pinus pinaster as bioindicators of polycyclic aromatic hydrocarbons. Environmenal and Experimental Botany, 72 (2). pp. 339-347. ISSN 0098-8472

[img]
Preview
PDF
Oliveira_M_Differences_between_Pinus_pinea_and_pinus_pinaster_as_bioindicators_of_polycyclic_aromatic_hydrocarbons_2011.pdf
Preprint

Download (1MB) | Preview

Abstract

The potential of Univariate and Multivariate Analysis and specifically Principal Components Analysis (PCA), has been employed to assess the performance of pine needles as bioindicators of polycyclic aromatic hydrocarbons (PAHs) and particularly emphasize the crucial importance of making a distinction between different pine species if more than one is sampled. Four sampling sessions were done in 29 sites and needles of two common pine species (Pinus pinaster Ait. in 19 sites and Pinus pinea L. in 12) were collected and analysed using gas chromatography–mass spectrometry (GC–MS) and PCA. The results obtained indicated significant differences between species, attributed to their different morphology. The mean total PAH concentration of the P. pinaster needles are over two times higher than P. pinea’s. This difference is lower when the results are presented in lipid weight, but still statistically significant. Samples from the two sites with adjacent trees reinforce these conclusions, showing significant differences in terms of PAH mean concentration and aromatic ring patterns.