Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Stability of singular jump-linear systems with a large state space : a two-time-scale approach

Nguyen, Dung Tien and Mao, Xuerong and Yin, G. and Yuan, Chenggui (2012) Stability of singular jump-linear systems with a large state space : a two-time-scale approach. The Australian and New Zealand Industrial and Applied Mathematics Journal, 52 (4). pp. 372-390.

[img] PDF
1.Stability.pdf - Final Published Version

Download (707kB)

Abstract

This paper considers singular systems that involve both continuous dynamics and discrete events with the coefficients being modulated by a continuous-time Markov chain. The underlying systems have two distinct characteristics. First, the systems are singular, that is, characterized by a singular coefficient matrix. Second, the Markov chain of the modulating force has a large state space. We focus on stability of such hybrid singular systems. To carry out the analysis, we use a two-time-scale formulation, which is based on the rationale that, in a large-scale system, not all components or subsystems change at the same speed. To highlight the different rates of variation, we introduce a small parameter ε>0. Under suitable conditions, the system has a limit. We then use a perturbed Lyapunov function argument to show that if the limit system is stable then so is the original system in a suitable sense for ε small enough. This result presents a perspective on reduction of complexity from a stability point of view.