Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Regulation of autophagosome formation by Rho kinase

Mleczak, Andrzej and Millar, Sarah and Tooze, Sharon A and Olson, Michael F and Chan, Edmond Y W (2013) Regulation of autophagosome formation by Rho kinase. Cellular Signalling, 25 (1). pp. 1-11. ISSN 1873-3913

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Macroautophagy, commonly referred to as autophagy, is a protein degradation pathway that functions at a constitutive level in cells, which may become further activated by stressors such as nutrient starvation or protein aggregation. Autophagy has multiple beneficial roles for maintaining normal cellular homeostasis and these roles are related to the implications of autophagy in disease mechanisms including neurodegeneration and cancer. We previously searched for novel autophagy regulators and identified Rho-kinase 1 (ROCK1) as a candidate. Here, we show that activated ROCK1 inhibits autophagy in human embryonic kidney 293 cells. Conversely, ROCK inhibitory compounds enhanced the autophagy response to amino acid starvation or rapamycin treatment. Inhibition of ROCK during the starvation period led to a more rapid response with the production of larger early autophagosomes that matured into enlarged late degradative autolysosomes. Despite the production of enlarged LC3-positive early autophagosomes, membrane precursors containing WD-repeat protein interacting with phosphoinositides 1 (WIPI1) and mammalian Atg9 were not affected by ROCK inhibition, suggesting that phagophore elongation had been unusually extended. However, the enlarged autophagosomes were enriched in ULK1 which was essential to allow progression of autophagy flux. Our results demonstrate a novel role for ROCK in the control of autophagosome size and degradative capacity.