
This version is available at https://strathprints.strath.ac.uk/41329/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Nanogel formation of polymer solutions flowing through porous media

Laura Campo-Deaño, Francisco J. Galindo-Rosales, Fernando T. Pinho, Manuel A. Alves and Mónica S. N. Oliveira

Gel formation by the flow of dilute aqueous polyacrylamide solutions with sodium chloride through porous media.
Nanogel formation of polymer solutions flowing through porous media

Laura Campo-Deaño, Francisco J. Galindo-Rosales, Fernando T. Pinho, Manuel A. Alves and Mónica S. N. Oliveira

Received 21st March 2012, Accepted 26th April 2012
DOI: 10.1039/c2sm25654a

A gelation process was seen to occur when Boger fluids made from aqueous solutions of polyacrylamide (PAA) and NaCl flowed through porous media with certain characteristics. As these viscoelastic fluids flow through a porous medium, the pressure drop across the bed varies linearly with the flow rate, as also happens with Newtonian fluids. Above a critical flow rate, elastic effects set in and the pressure drop grows above the low-flow-rate linear regime. Increasing further the flow rate, a more dramatic increase in the slope of the pressure drop curve can be observed as a consequence of nanogel formation.

In this work, we discuss the reasons for this gelation process based on our measurements using porous media of different sizes, porosity and chemical composition. Additionally, the rheological properties of the fluids were investigated for shear and extensional flows. The fluids were also tested as they flowed through different microfluidic analogues of the porous media. The results indicate that the nanogel inception occurs with the adsorption of PAA molecules on the surface of the porous media particles that contain silica on their surfaces. Subsequently, if the interparticle space is small enough a jamming process occurs leading to flow-induced gel formation.

1 Introduction

A porous medium consists of a solid material permeated by a network of interconnected pores, or voids. In the last years, various studies dealing with the flow of non-Newtonian fluids through porous media have been carried out. The importance of porous media flows lies in the wide range of engineering applications, particularly in areas such as crude oil recovery, filtration of suspensions in polymer solutions and flow in soils.

One of the reasons for the complexity of the flow in porous media, is that it is neither a pure shear nor a pure elongational flow, but a complex combination of both, with a strong shear component near the particle walls and a strong extensional component away from the walls due to the converging–diverging flow paths. In addition, for non-Newtonian fluids there is an added degree of complexity as the flow may combine inertial and elastic nonlinearities.

Dilute aqueous polyacrylamide (PAA) solutions are used frequently in enhanced oil recovery applications and in microfluidic research in the formulation of viscoelastic fluids with constant shear viscosity, also known as Boger fluids. The use of Boger fluids in porous media devices is very convenient due to their shear-independent viscosity, allowing the analysis of elastic behaviour isolated from other non-linear effects. As such, changes in the flow kinematics relative to those of Newtonian fluids can undoubtedly be associated with fluid elasticity.

Different porous media analogue devices, at the micro- and macro-scale, have been developed over the years, in order to investigate the effect of fluid flow elasticity and to study multiphase transport in porous media. However, so far there are still many unanswered questions regarding these phenomena, such as flow-induced structure formation in a microporous flow, adsorption of polymers on walls, mechanical retention and pore blockage, all of which are difficult to replicate in the simplified analogues.

When low viscosity Boger fluids flow through a porous medium at low flow rates, the pressure drop is proportional to the flow rate, as also happens with Newtonian fluids. However, at higher flow rates there is an increase in the slope of the pressure gradient curve, induced by elastic effects. On further increasing the flow rate, we found that the pressure gradient increases dramatically, most likely as a consequence of a blockage of the porous network, which we anticipate to be due to gel formation of the polymer solution. In the present work we envision to understand the causes for flow induced gel formation when low viscosity Boger fluids flow through porous media. To this end, various shear and extensional flow experiments were carried out for conditions that generate large shear and extensional deformation rates: (i) LAOS (large amplitude oscillatory shear) and steady-shear flow tests were performed to measure the rheological properties at high shear rates; (ii) flow visualizations using microchannels with a hyperbolic contraction, which induces a quasi-uniform extensional rate at the centre line of the}

Cite this: DOI: 10.1039/c2sm25654a

www.rsc.org/softmatter

ART C2SM25654A
microgeometry were carried out to investigate the effects of the high extensional strain rates; (iii) the flow through various microchannel analogues of porous media was analyzed with the aim of reproducing the flow conditions leading to the gel formation observed in real porous media. The optical access to the flow in these types of devices allows us to visualize the flow patterns under controlled flow conditions, in contrast with the inherent limitations when real porous media are used.

2 Materials and methods

2.1 Fluid preparation

Polyacrylamide with a large average molecular weight ($M_w = 18 \times 10^6$ g mol$^{-1}$, Polysciences) was used to prepare the viscoelastic solutions by mixing the polymer into the solvent (de-ionized water) at different concentrations (50 and 125 ppm w/w) with 1% of NaCl (w/w), using magnetic stirrers at low speeds to prevent mechanical degradation of the polymer molecules. The detailed procedure for fluid preparation can be found in Campo-Deano et al.$^{12}$

2.2 Fluid rheology

Rheological characterization in shear flow was performed on a stress-controlled rotational rheometer (Anton Paar, model Physica MCR301), with a plate-plate geometry of 50 mm diameter and using a gap of 100 $\mu$m. Steady shear flow measurements in the range of shear rates, $0.1 \leq \dot{\gamma} \leq 10000$, were carried out at 20.0 °C. As shown in Fig. 1a, both PAA solutions exhibit a nearly constant viscosity across the range of shear-rates tested (Boger fluid behaviour). The average viscosities are 1.05 and 1.00 mPa s for the more concentrated and less concentrated polymer solutions, respectively. LAOS experiments were also performed in order to evaluate the progressive transition from a linear to nonlinear rheological response and, simultaneously, to assess whether a simple shear flow at high shear rates can lead to shear induced gelification. These results are shown in Fig. 1b and will be discussed in section 3.2.2. In addition, the longest relaxation times were measured using a Capillary Breakup Extensional Rheometer (CaBER) yielding $\lambda = 10$ and 4 ms for the 125 and 50 ppm solutions, respectively.

2.3 SEM and Cryo-SEM imaging

A scanning electron microscope (SEM) FEG-ESEM/EDS/EBSD (FEI Quanta 400FEG ESEM/EDAX Genesis X4M) and a Cryo-Scanning Electron Microscope FE-CryoSEM/EDS (JEOL JSM 6301F/Oxford INCA Energy 350/Gatan Alto 2500) were used for imaging the microchannels, the porous media particles, and the free and fractured surfaces of liquid nitrogen frozen fixed samples containing the PAA hydrogel formed in some porous media.

2.4 Porous media

Each of the real porous media used in this work consist of a hollow acrylic cylindrical tube (1.95 cm inner diameter) filled with an unconsolidated packed bed. The experimental set-up is similar to that used by Galindo-Rosales et al.$^6$ but in this work we employ a variety of unconsolidated beds with particles of different materials and different Sauter mean diameters, $x_{32}$: sand with $x_{32} = 400 \mu$m, glass beads (ballotini) with $x_{32} = 403 \mu$m and $x_{32} = 150 \mu$m, and plastic beads with $x_{32} = 142 \mu$m and $x_{32} = 81 \mu$m. The Sauter mean diameters were calculated from the

---

Fig. 1  Shear rheology experiments of 50 and 125 ppm PAA aqueous solutions with 1% of NaCl: (a) viscosity curve; (b) LAOS response at $\omega = 1$ rad s$^{-1}$ and at different strains for (i) 50 ppm of PAA with 1% of NaCl, and (ii) 125 ppm of PAA with 1% of NaCl.
particle size distributions measured using a laser diffraction particle size analyser (Beckman Coulter LS 230). Fig. 2 shows the SEM images of the particles used. The particles of sand and ballotini with $x_{32} = 150 \, \mu m$ have a significant variations in size and shape, unlike the ballotini with $x_{32} = 403 \, \mu m$ and the two types of plastic beads, for which the particle sizes are rather homogeneous and exhibit a spherical shape.

2.5 Microchannels, porous media analogues and flow visualization

Different microchannel configurations were used to investigate the flow characteristics under different flow types (shear dominated; extension dominated; mixed kinematics). The microchannels were fabricated in polydimethylsiloxane (PDMS) using standard soft-lithography techniques and SU-8 photo-resist moulds.

The microchannels used to observe the flow patterns at high elongational strain rates with a reduced influence of shear, are planar and present a single hyperbolic contraction followed by an abrupt expansion (Fig. 3a). The maximum width of the channel is $D_1 = 400 \, \mu m$, the minimum width of the contraction is $D_2 = 54 \, \mu m$ and the length of the hyperbolic contraction section is $L_c = 128 \, \mu m$, resulting in a total Hencky strain of $\varepsilon_H = \ln(D_1/D_2) = 2.12$ The depth of the microchannel is constant, $h = 45 \, \mu m$.

Microfluidic channels with a periodic arrangement (Fig. 3b), consisting of a continuous series of contractions and expansions with 117 repeating units (symmetric and asymmetric), were used as 1-D porous media analogues as explained in Galindo-Rosales et al.6 Finally, different microchannels with a depth of 50 \( \mu m \) and width of \( W = 600 \, \mu m \), containing arrays of 100 \( \mu m \) diameter cylinders (\( D_c \)) arranged to form interstitial spaces (\( e \)) between 10 and 50 \( \mu m \), similar to the average interstitial spaces in real porous media, were also used in order to evaluate the influence of interstitial spacing in the gelation process (Fig. 3c). A similar flow configuration was used at the macroscale as a 2-D microfluidic analogue of porous media by Yip et al.14 with relative success.

Flow visualizations were carried out using fluorescence streak photography. The optical setup consists of an inverted epi-fluorescence microscope (DMI-5000M, Leica Microsystems GmbH).
equipped with a CCD camera (DFC350 FX, Leica Microsystems GmbH), a light source (100 W mercury lamp) and a filter cube (Leica Microsystems GmbH, excitation filter BP 530–545 nm, dichroic 565 nm and barrier filter 610–675 nm). The fluids were seeded with 1 μm fluorescent tracer particles (Nile Red, Molecular Probes, Invitrogen, Ex/Em: 520/580 nm). The microgeometry containing the seeded fluid was continuously illuminated and the light reflected by the fluorescent tracer particles was imaged through the microscope objective (10×, NA = 0.25) onto the CCD array of the camera using ‘long’ exposure times (which were varied according to the flow rate) in order to capture the pathlines of the tracer particles.

A syringe pump (PHD2000, Harvard Apparatus) was used to inject the fluid at constant flow rate in to the microchannels, using Hamilton syringes with different volumes (50 and 100 μl), connected to the microgeometries by Tygon tubing of 0.44 mm internal diameter.

2.6 Pressure drop measurements

For the experiments in the real porous media, the liquid was introduced in to the column from a pressurized reservoir; the inlet pressure could be varied and was measured with a manometer (Wika Instrument Corporation, model 332.50; range 0–2.5 bar). The flow inlet was placed at the top of the column and the outlet was located at the bottom part, where the fluid was collected and weighed along time to measure the mass flow rate. The pressure drop measurements were carried out between two pressure taps in the column separated by a distance of \( L = 14.7 \pm 0.1 \) cm using differential pressure sensors (Honeywell 26PC series) covering ranges up to \( \Delta P = 207 \) kPa.

For the symmetric and asymmetric microchannel 1-D analogues of the porous media, the pores of the differential pressure transducers were connected to two pressure taps, located upstream and downstream of the test section, containing the 117 repeating units. A 10 V DC power supply (Lascar electronics, PSU 206) was used to power the pressure sensors that were also connected to a computer via a data acquisition card (NI USB-6218, National Instruments) in order to record the output data using LabView v8.2 software. The transient response of the pressure sensors was continuously recorded until steady-state was reached. To compare the results of the microchannels with the real porous media, we measured the variation of the pressure gradient as function of the interstitial velocity in both systems.

3 Results and discussion

3.1 Nanogel formation

The Boger fluid flows through the real porous media were initially evaluated by flowing samples of 50 and 125 ppm of PAA with 1% of NaCl through three different porous media: sand with \( x_{32} = 400 \) μm and ballotini with \( x_{32} = 403 \) and 150 μm. Fig. 4 presents the variation of the pressure gradient across the bed, \( \Delta P/L \), with the interstitial velocity, \( U_i \). For all packed beds, the variation is linear at low \( U_i \), as also happens for Newtonian fluids. Above a critical velocity, elastic effects set in and the slope of the \( \Delta P/L \) vs. \( U_i \) curve increases significantly. The PAA solution of 125 ppm with salt produces higher pressure gradients than the 50 ppm sample, given the higher viscosity of the former (cf. Fig. 1a), and also due to its higher relaxation time, which increases with the polymer concentration, thus leading to flow instabilities at lower flow rates. For the sand bed and the ballotini bed of \( x_{32} = 150 \) μm, larger pressure drops are observed, but above a critical pressure gradient the observed flow rate actually decreases (delimited by a rectangle in Fig. 4). This effect corresponds to a significant decrease in the permeability of the porous medium, and probably is a consequence of a gelation process of the polymer solutions subject to high shear and/or elongational strain rates. We note, however, that for the bed of ballotini with \( x_{32} = 403 \) μm this flow rate reduction at higher pressure gradients is not observed in the range of flow rates investigated.

The trigger of this gelation process could lie in the fact that the polymer solution adsorbs on the solid surfaces of the particles of the porous media containing silica (SiO₂).

For the symmetric and asymmetric microchannel 1-D analogues of the porous media, the pores of the differential pressure transducers were connected to two pressure taps, located upstream and downstream of the test section, containing the 117 repeating units. A 10 V DC power supply (Lascar electronics, PSU 206) was used to power the pressure sensors that were also connected to a computer via a data acquisition card (NI USB-6218, National Instruments) in order to record the output data using LabView v8.2 software. The transient response of the pressure sensors was continuously recorded until steady-state was reached. To compare the results of the microchannels with the real porous media, we measured the variation of the pressure gradient as function of the interstitial velocity in both systems.

The Royal Society of Chemistry 2012

ART C2SM25654A
the initial adsorption of the PAA molecules and consequently, the jamming process at high deformation rates is inhibited. When the adsorption becomes relevant, at larger times, the corresponding lower flow rates do not favour the jamming phenomena and no blockage is observed.

3.2 Theory validation

3.2.1 Cryo-SEM analysis. In this section we focus particularly on the real porous media made of sand ($x_{32} = 400$ μm) and of ballotini ($x_{32} = 150$ μm), as no atypical behaviour was found for the porous medium of ballotini with particle diameter $x_{32} = 403$ μm.

The Cryo-SEM images clearly show a nanogel structure. Through observation of a broken portion of the porous media bed after freezing, it was possible to see a vast structure formed within the interstitial spaces in between the particles (Fig. 6). For the case of the ballotini (Fig. 6a), this structure is akin to the hydrogel structure formed when a hydrogel glue (Tissue-Tek®, Agar Scientific) is added to new ballotini particles and is subsequently observed by Cryo-SEM (Fig. 7). On the other hand, in the case of the sand (Fig. 6b), the structure seems to be less pervasive i.e., it is not covering the sand particles in such an extensive manner. This can be justified with the fact that the sand particles are on average two and a half times larger than the ballotini particles, are not spherical and exhibit a wider distribution of sizes, when compared to the ballotini particles. As a result, the porous bed in this case is highly non-homogeneous with a wide range of interstitial spacings, and as observed by SEM (Fig. 6) the gel structure seems to appear at small interstitial spaces (less than 10 μm approximately). In the case of ballotini these smaller interstices occur more frequently due to the smaller and more homogeneous particle size distribution.

3.2.2 Flow under controlled shear and extensional conditions. In order to confirm that the origin of the gelification process is not just a consequence of pure shear and/or pure extensional strain rates, but also because of an adsorption phenomenon of the PAA molecules on the surface of the particles of the porous media, different shear and extensional experiments were carried...
stress is out of phase with the strain and the area enclosed presents a quasi-circular shape (a circular shape corresponds to an ideal liquid) and is larger, reflecting the predominance of the dissipated energy. This is confirmed with the stress/strain rate diagram in which the area is small, corresponding to a reduced stored energy, indicating a viscous-like behaviour at high deformations.

We have also examined the flow patterns in the hyperbolic contraction/sudden expansion for the solutions with 50 and 125 ppm of PAA with 1% of NaCl. Converging entry flows show complex flow patterns combining both shear and extensionally dominated regions; near the walls shear effects dominate, while along the centre line the flow is primarily extensional and essentially shear-free. High flow rates were applied in order to induce high deformation rates. No sign of gelation was observed up to the highest flow rate used in the experiments, $Q = 100 \text{ ml h}^{-1}$, corresponding to an extensional rate of $\dot{\varepsilon} = (U_2 - U_1)/L_e \approx 8 \times 10^3 \text{ s}^{-1}$, where $U_1$ and $U_2$ are the bulk velocities in the upstream channel and the throat of the contraction, respectively, and $L_e$ is the contraction length (cf. Fig. 3a). Beyond this flow rate the resulting pressure is so high that the microchannel is damaged. We thus conclude that pure extensional strain rates in PDMS microfluidic hyperbolic contractions are not sufficient to induce the gelification of the polymer solutions.

Additionally, flow visualizations and pressure drop measurements through the microchannel analogues of the porous media were carried out to assess whether the gel formation could be due to a combination of shear and extensional deformations. The microchannels used here are identical to those used by Galindo-Rosales et al.\textsuperscript{6} which are able to mimic the porous beds with $x_{32} = 390 \mu m$. Pressure drop measurements of the polymer solutions through the 1-D porous media analogue, together with the pressure drop measurements obtained from the real porous media are compared in Fig. 8. In this case the pressure gradient is plotted as a function of the Deborah number, which is defined as:

$$De = \frac{\lambda U}{L}$$

where $\lambda$ is the longest relaxation time measured in the CaBER (cf. Section 2.2), $L$ is a characteristic length scale (taken as the particle Sauter mean diameter in the case of the real porous media and as the equivalent particle size in the case of the microchannel 1-D analogue of the porous media) and $U$ is a characteristic velocity (taken as the interstitial velocity). The Deborah number represents a ratio of time scales of the material ($\lambda$) and of the flow process ($U/L$), allowing the comparison of the results obtained in the microchannels with those obtained with the porous media.

As illustrated in Fig. 8, the pressure gradient curves measured in the 1-D porous media analogue microchannels are qualitatively different from the pressure gradient curves for the two real porous media when the formation of gel is observed, because of the absence of the third slope region in the former. It is also important to point out that the results obtained with the ballotini of $x_{32} = 403 \mu m$ not only do not show the third slope in the pressure gradient curve, but the onset of elastic instabilities is not matched by the results obtained in the microchannels, since the latter correspond to a simplified one-dimensional model of real porous media and the elastic effects are less pronounced. The
onset of the rise in pressure the gradient for the ballotini of \( x_{32} = 403 \) \( \mu \)m occurs at a Deborah number corresponding to about one third of the critical value for the microfluidic devices. Therefore, flow visualizations and pressure gradient measurements of the fluid flow through the asymmetric and symmetric configurations did not provide new insights about the gelation phenomenon observed in the real porous media. The absence of gel formation in the microchannel 1-D porous media analogues, even when the interstitial spacing was of the same order of that found in the real porous media. As seen in Fig. 9 there is no evidence of flow induced gelation. We can observe, however, elastic-driven flow instabilities.

### 3.2.3 Flow through plastic bead porous media.

In order to corroborate the importance of the adsorption phenomenon of the PAA molecules on the surface of particles containing silica in the gelation process, different experiments were carried out in the real porous media using two sizes of plastic spheres (\( x_{32} = 142 \) \( \mu \)m and 81 \( \mu \)m) without any trace of SiO\(_2\) in their composition. The porous medium made of plastic particles of \( x_{32} = 142 \) \( \mu \)m, has nearly the same interstitial spacing as the ballotini porous medium with \( x_{32} = 150 \) \( \mu \)m, but no third slope is observed in the pressure gradient flow curve for both samples of 125 and 50 ppm of PAA with 1% of NaCl (Fig. 10), and therefore no gelification is found. The experimental conditions are the same as those in the case of ballotini with \( x_{32} = 150 \) \( \mu \)m and sand particles with \( x_{32} = 400 \) \( \mu \)m, apart from the fact that the plastic spheres do not

---

**Fig. 8** Influence of the Deborah number on the measured pressure gradient through the real and the 1-D porous media analogues, for (a) 50 and (b) 125 ppm PAA aqueous solutions with 1% of NaCl.

**Fig. 9** Flow visualization in the microchannels with cylinder array (a) cylinders with interstitial spacing of 10 \( \mu \)m (\( Q = 0.6 \) ml h\(^{-1}\)) and (b) cylinders with interstitial spacing of 50 \( \mu \)m (\( Q = 0.2 \) ml h\(^{-1}\)), using an aqueous solution of PAA with 50 ppm with 1% of NaCl.
contain any trace of silica. If we take the conditions to further extremes, by decreasing the interstitial spacing using 81 μm diameter plastic beads, while working with the fluid with the highest polymer concentration (125 ppm), our results again confirm the absence of gelification, as shown in Fig. 10. In this way we confirm that the gelation process starts at high deformation rates, but only when an initial adsorption phenomenon occurs between PAA molecules and the surface of the particles containing SiO₂.

4 Concluding remarks

In this work we describe several experiments that were carried out in order to explain a flow-induced gelation phenomenon of low viscosity dilute aqueous solutions of PAA containing 1% of NaCl when they flow through unconsolidated sand and ballotini beds. This involved an extensive investigation of the flows of such fluids in various geometries including standard rheological flows, hyperbolic contractions, meandering channels and arrays of cylinders, as well as the effect of different materials. The results suggest that the gelation process starts with the adsorption of PAA molecules on the surface of the particles, but only takes place for those containing silica (here sand and ballotini). Additionally it is necessary to achieve extreme shear and elongational flow conditions, and interstitial spaces smaller than about 10 μm. Following the adsorption, a jamming process takes place at high deformation rates leading to gel formation and blockage of the porous media.

Acknowledgements


References

1. V. Berejnov, N. Djilali and D. Sinton, Lab-on-chip methodologies for the study of transport in porous media: energy applications, Lab Chip, 2008, 8, 689–693.


