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Abstract In this study, two microfluidic devices are pro-

posed as simplified 1-D microfluidic analogues of a porous

medium. The objectives are twofold: firstly to assess the

usefulness of the microchannels to mimic the porous med-

ium in a controlled and simplified manner, and secondly to

obtain a better insight about the flow characteristics of vis-

coelastic fluids flowing through a packed bed. For these

purposes, flow visualizations and pressure drop measure-

ments are conducted with Newtonian and viscoelastic fluids.

The 1-D microfluidic analogues of porous medium consisted

of microchannels with a sequence of contractions/expan-

sions disposed in symmetric and asymmetric arrangements.

The real porous medium is in reality, a complex combination

of the two arrangements of particles simulated with the

microchannels, which can be considered as limiting ideal

configurations. The results show that both configurations are

able to mimic well the pressure drop variation with flow rate

for Newtonian fluids. However, due to the intrinsic differ-

ences in the deformation rate profiles associated with each

microgeometry, the symmetric configuration is more suit-

able for studying the flow of viscoelastic fluids at low De

values, while the asymmetric configuration provides better

results at high De values. In this way, both microgeometries

seem to be complementary and could be interesting tools to

obtain a better insight about the flow of viscoelastic fluids

through a porous medium. Such model systems could be

very interesting to use in polymer-flood processes for

enhanced oil recovery, for instance, as a tool for selecting the

most suitable viscoelastic fluid to be used in a specific for-

mation. The selection of the fluid properties of a detergent

for cleaning oil contaminated soil, sand, and in general, any

porous material, is another possible application.

Keywords Microfluidics � Porous media � Rheology �
Contraction-expansion � Viscoelastic fluids

1 Introduction

It is well known that some additives impart non-Newtonian

fluid properties to aqueous and hydrocarbon systems,

which have been widely used in applications related to the

petroleum industry, among others (Gaitonde and Middle-

man 1966; Marshall and Metzner 1967; Wissler 1971).

These additives are used in polymer-flood processes for

enhanced oil recovery and show the practical relevance of

investigating non-Newtonian fluid flow through porous

media. The high price of oil and the need for increasingly

higher rates of recovery foster the use of such advanced

recovery techniques (Taylor and Nasr-El-Din, 1998). In

addition to enhanced oil recovery, non-Newtonian fluid

flow through porous media is relevant in a variety of

applications, such as in polymer processing, lubrication

and waste disposal applications (Chhabra et al. 2001).
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Non-Newtonian is a generic term that incorporates a

variety of complex fluid phenomena, which requires

sophisticated mathematical models for proper description.

Further complications arise when considering the flow

through porous media, due to the complexity of the flow

paths, which include the coexistence of shear and exten-

sional components. So far, no general methodology has

been developed. In the absence of such a general approach,

four main models are found in the literature to deal with the

flow of complex fluids in porous media, namely continuum

models, ’’bundle of tubes’’ models, pore-scale network

modeling and numerical methods (Sochi 2010).

1. The continuum models are widely used and they

represent a simplified macroscopic approach in which

the porous medium is treated as a continuum. All the

complexities and fine details of the microscopic pore

structure are absorbed into bulk terms of correlations

or of properties that reflect average properties of the

medium, like permeability or porosity. Semi-empirical

equations relating flow rate and pressure gradient such

as Ergun’s equation, Darcy’s law or Carman–Kozeny’s

equation fall into this category. These empirical

approaches are backed by years of experimental

validation, and work well for Newtonian fluid flow

(Balhoff and Thompson 2004). Regarding non-New-

tonian flow, Pearson and Tardy (2002) reviewed the

main continuum models used for describing transport

in porous media with special emphasis on the effects of

non-Newtonian rheology and concluded that none of

the available continuum models gives accurate esti-

mates of macroscopic transport properties (López

2004).

2. In the capillary bundle models, the flow channels in a

porous medium are depicted as a bundle of tubes. The

simplest form is the model with straight, cylindrical,

identical parallel tubes oriented in a single direction.

This model is only adequate for relatively simple

unconsolidated and highly permeable porous media,

whereas for more compact media more complex

geometrical descriptions become necessary. Although

simple, the capillary bundle approach does not allow

for a correct interpretation of the flow of polymer

solutions at the pore scale (Christopher and Middle-

man 1965; Sorbie et al. 1989), presumably because it

only considers shear effects and is not able to

incorporate extensional-flow effects, which become

quite relevant whenever the fluid is elastic. In contrast,

the response of a Newtonian fluid in extensional flow

has a constant proportionality to that in shear flow for

the same equivalent deformation rate.

3. Pore-scale network modeling is a relatively novel

method that has been developed to deal with the flow

through porous media and other related issues. It is a

mesoscale method that partly accounts for the physics

of flow and void space structure at pore level with

affordable computational resources. The void space is

described as a network of flow channels with idealized

geometry. Rules that determine the transport properties

in these channels are incorporated into the network to

compute effective properties on a mesoscopic scale.

The appropriate pore-scale averaged physics combined

with a representative description of the pore space

gives rise to models that can successfully predict the

average flow behavior (Blunt 2001). The general

strategy in network modeling is to use the rheology

of the fluid and the void space description of the

porous medium as an input to the model. The flow

simulation in a network starts by modeling the flow in

a single capillary and is subsequently extended to the

network of capillaries, represented by a set of equa-

tions and satisfying mass conservation and momentum

balance, which are solved simultaneously to find the

pressure field and other relevant physical quantities

(Sochi 2007).

4. Numerical methods are used to solve the flow field

governing equations. This approach consists of a

detailed description of the porous medium and the

relevant physics at pore-scale level. The major advan-

tage is the capability, in principle at least, to deal with

time-dependent flows and complex geometrical con-

figurations. The disadvantage is that the detailed pore

space description is often complex, hard to implement

and leads to large computational costs and serious

convergence difficulties, the latter being enhanced for

viscoelastic fluids. For these reasons, the flow pro-

cesses and porous media currently within the reach of

numerical investigation are restricted to the simplest

ones (Sochi 2010; Liu and Wu 2009), unless very

advanced computational resources are available.

Considering this scenario, it can be said that the problem

of the flow of non-Newtonian fluids through porous media

has been extensively analyzed over the past 50 years,

although it is far from being fully understood.

A variety of porous media have been used in flow

studies involving complex fluids. Included are models of

porous media such as sand beds and matrices of uniformly

packed spheres and woven screen, as well as alandum

plugs, sandstone cores, porous metal disk, sintered glasses,

and compressed glass wool. Each sample of a model of

porous medium is in itself somewhat unique in geometric

morphology, and there are formidable problems in pre-

cisely defining the flow conditions existing within any

particular structure. Several of the published investigations

concerned with more fundamental aspects of the flow of
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non-Newtonian fluids through porous media involved the

use of unconsolidated models (Savins 1969). For devel-

oping this study, we also used an unconsolidated packed

bed of sand as a porous medium.

Viscoelasticity is one of the main features of non-New-

tonian behavior exhibited by fluids made from polymer

macromolecules. Apart from exhibiting shear-thinning

behavior (the exception are Boger fluids), viscoelastic

solutions also possess fading memory (Macosko 1994), the

elongational viscosity is both strain and strain rate dependent

(Petrie, 2006a, b) and in some cases largely exceeds the shear

viscosity. In particular, the strain hardening behavior of the

Trouton ratio (the ratio between extensional and shear vis-

cosities) complicates substantially the analysis of visco-

elastic fluid flow through a porous medium and so it is not

surprising that there is little definitive and quantitative

information available on the role of viscoelasticity in the

flow through porous media (Chhabra et al. 2001). It is the

major aim of this study to contribute for an insight on this

matter. To do it, dilute aqueous solutions of polyacrylamide

(PAA) were used as model viscoelastic fluids. Moreover,

polyacrylamide is an important polymer used for oil recov-

ery applications, due to the pronounced elastic behavior and

significant strain hardening behavior (Duda et al. 1983).

It is widely accepted that in porous media the con-

verging–diverging nature of the flow paths brings out the

influence of both extensional and shear properties of the

fluid. The principal mode of deformation to which a

material element is subjected as the flow converges into a

constriction involves both shearing of the material element

and stretching or elongation in the direction of the flow,

while in the diverging portion the flow involves both

shearing and compression or deceleration. The actual

channel geometry determines the ratio of shearing to

extensional contributions. Strong experimental evidence

indicates that the flow of viscoelastic fluids through packed

beds can exhibit significant increases in the pressure gra-

dient with increasing flow rate, or an increase in the

apparent viscosity, above that expected for purely viscous

fluids with a similar shear viscosity. This increase has been

linked with the strain hardening behavior of the fluid,

coupled with the extensional nature of the flow field within

the pores due to the successive expansions and contractions

that a fluid element experiences as it flows through the

medium (Metzner and Metzner 1970). Even though the

flow field at pore level is not an ideal extensional flow, due

to the simultaneous presence of shear and rotation, the

increase in flow resistance is normally referred to as an

extension thickening effect, though its precise nature is yet

unknown or controversial (Sochi 2009).

Microfluidics is the science and technology of systems

that processes or manipulates very small amounts of fluid by

using channels with characteristic length-scales of about or

less than 100 lm (Whitesides 2006). The numerous

advantages of microfluidics, namely the reduced amounts of

sample and reagents needed, the high surface-to-volume

ratio, the substantial waste reduction, the low cost of fab-

rication and the possibility of producing highly integrated

and disposable devices, have stimulated remarkable interest

and unraveled an extensive range of applications (Oliveira

et al. 2008). Moreover, some microfluidic devices also offer

the advantage of having optical access to analyze the flow

using non-intrusive optical techniques (Devasenathipathy

et al. 2003; Sinton 2004). For instance, it is possible to

quantify the velocity field in various planes of the micro-

channel by means of microparticle image velocimetry

(lPIV) (Santiago et al. 1998; Oliveira et al. 2007), as well

as using fluorescence microscopy to visualize the flow pat-

terns and measure the speed of the flow (Stone et al. 2004).

The pore space within a porous medium is not only

difficult to access visually but also often characterized by

parameters like connectivity and tortuosity, which are

difficult to measure and quantify. As materials like sand

and clay have an average particle size on the order of

hundred microns, microchannels containing a series of

contractions and expansions could be used as simple por-

ous medium analogues. In this work, microfluidic devices

with two different geometries are proposed as simplified

1-D microfluidic analogues for a porous medium. We

pursue two main aims with this work: firstly, to validate the

usefulness of these microfluidic channels to mimic a real

porous medium; secondly, to analyze the flow of a dilute

polymer solution through the microchannels to explain the

results obtained with the real porous medium. This analysis

will be based on experiments involving flow visualizations,

pressure drop and flow rate measurements, as well as

rheological characterization of the fluids before and after

flowing through the porous medium.

2 Materials and methods

2.1 Materials

In this study, we used a Newtonian liquid (de-ionized water)

and two dilute aqueous solutions of polyacrylamide (Mw ¼
18� 106g=mol; supplied by Sigma-Aldrich Co.) at 50 and

125 ppm by weight, hereafter named as PAA50 and

PAA125, respectively. These concentrations are well below

the overlap concentration (c� ¼ 512 ppm) (Sousa et al.

2010). Solutions were prepared by mixing the polymer into

the solvent (de-ionized water) at different concentrations,

utilizing magnetic stirrers at low angular speed to avoid

mechanical degradation of the polymer molecules. To pre-

vent chemical degradation, all solutions were kept in a

refrigerator. The density of all fluids was measured at 20�C
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using a calibrated 25 cm3 pycnometer: qwater ¼ 998:0 kg=m3;

qPAA50 ¼ 998:0 kg=m3 and qPAA125 ¼ 998:2 kg=m3:

2.2 Rheological characterization

The rheological behavior of the solutions was characterized

experimentally under steady simple shear and uniaxial

extensional flows. All the rheological tests were carried out

at 20.0 ± 0.1�C.

The steady shear tests were used to determine the

dependence of the shear viscosity with shear rate in steady

flow. The shear viscosity curves were obtained using a

controlled stress rotational rheometer (Physica MCR 301,

Anton Paar GmbH). Since the shear rates attained in a

porous media can be very high, it is essential to have

information at high shear rates. From a systematic experi-

mental study about the adequacy of different geometries

available (cone-plate, parallel plates and concentric cylin-

ders) to accurately measure the shear viscosity of de-ionized

water, we selected the parallel plates with a diameter of

50 mm and a gap of 0.1 mm which provided reliable mea-

surements at high shear rates without significant effect of

inertia-driven secondary flows. In addition, the sensitivity at

low shear rates was very similar to that of the cone-plate

geometry. All viscosity curves were measured for shear

rates, _c; ranging from 0.1 to 10,000 s�1 in 15 steps loga-

rithmically distributed. Three independent runs were carried

out to ensure the reproducibility of the measurements. Fig-

ure 1 shows that both solutions exhibit shear thinning

behavior in the range of shear rates considered. Moreover,

all the steady shear viscosity values measured are within the

two reliable measurement limits, i.e. the minimum torque

line (the line represented corresponds to 20 times the torque

resolution of the rheometer) and the line indicating the onset

of inertial instabilities (Sdougos et al. 1984).

A capillary break-up extensional rheometer (Haake

CaBER-1, Thermo Fischer Scientific Inc.) was used to

measure the relaxation time of the polymer solutions under

extensional flow. These measurements were performed

using circular plates with a diameter Dp ¼ 6 mm: The

initial separation height was set to hi ¼ 3:01 mm: The

liquid bridge confined between the two plates was initially

stretched as the top plate moved linearly [-50 B t (ms) B

0] to a final height, hf ¼ 12:03 mm: Subsequently, the

stretched liquid filament thins in a process driven by the

competing effects of viscoelastic and capillary forces. The

time evolution of the normalized mean diameter ðD=D0Þ
curves in the elasto-capillary thinning phase were fitted

using an exponential decay function (Fig. 2) (Entov and

Hinch 1997)

D

D0

¼ Ce
�t
3k; ð1Þ

where D0 is the initial diameter of the filament, C is a fluid

dependent constant, t is the time and k is the relaxation

time. According to Campo-Deaño and Clasen (2010), the

longest relaxation times of PAA solutions here considered

can be accurately measured with the CaBER technique

without any special protocol, given that the zero-shear

viscosity of each viscoelastic fluid is sufficiently high

(Fig. 1). Nevertheless, at least 20 independent runs were

carried out for each fluid to ensure the reproducibility of

the measurements. For quantitative purposes, in the cal-

culation of the dimensionless numbers, we will use in all

cases the relaxation time determined experimentally from

Fig. 1 Steady viscosity curve measured for the three working fluids

at 20�C. The minimum measurable shear viscosity calculated from

920 the minimum torque of the rheometer (Tmin ¼ 10�7 N �m) and

the line marking the onset of secondary flow due to Taylor

instabilities are also shown as dashed and dotted lines, respectively

Fig. 2 Measurement of the longest relaxation time of the two PAA

solutions with the capillary break-up extensional rheometer. Time

evolution of the normalized diameters with corresponding exponential

fittings at 20�C
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the capillary break-up tests by means of Eq. 1:

kPAA125 ¼ 129� 4 ms and kPAA50 ¼ 54� 2 ms:

2.3 Microchannels geometry, fabrication

and experimental set-up

The complex nature of real porous media leads to the usage

of a simplified and controlled representation of the porous

structure to describe the phenomenological behavior of the

medium. The model selection is a function of the desired

level of detail, the intended application, the porous medium

characteristics, such as the porosity, the particles type

(shape, dimensions and internal structure), the medium

type (consolidated or not), among other relevant properties.

Since the macroscopic behavior depends on the local

behavior at the level of the particles that compose the

porous medium, any attempt to model it should be based on

an adequate description of the local geometric and trans-

port phenomena conditions. One-dimensional capillary

networks can be viewed as networks of elements without

intersections. Because of its simplicity, this was the first

type of theoretical model to be proposed for modeling the

porous media behavior, being the basis of the majority of

correlations and equations currently used (Martins et al.

2009).

In this work, the porous medium is modeled as a bundle

of non-uniform conduits with a periodic configuration.

Both consist of a continuous series of contractions and

expansions in two different arrangements: symmetric and

asymmetric. Both geometries contain 117 repetitive ele-

ments and Fig. 3 shows a zoomed view of two sketches

corresponding to these micro-geometries, where important

dimensions are indicated, as well as their correspondence

to the modeled arrangements of porous medium.

At the widest and narrowest parts, the widths of

the microgeometries are W1 and Wc; respectively, and the

lengths of each element are L1 and L2: The depth of the

channels ðHÞ is uniform and was kept constant for both

micro-devices studied. Table 1 summarizes the dimensions

of the different microgeometries used in the experiments.

The flow behavior of Newtonian and non-Newtonian

fluids was studied at room temperature (19.5 ± 0.9�C) for a

wide range of flow rates, which were imposed using a

syringe pump (PHD2000, Harvard Apparatus). Hamilton

syringes with volumes ranging from 50 ll to 1 ml were

used according to the desired flow rate and connected to the

microchannels via Tygon tubing with 0.44 mm of internal

diameter. The outlet of the microchannels was connected to

Tygon tubing that directs the fluid to a reservoir open to the

atmosphere where the fluid is collected.

Visualizations of the flow patterns relied on streak

photography. For this purpose, the fluids were seeded with

1 lm fluorescent tracer particles (Nile Red, Molecular

Probes, Invitrogen, Ex/Em: 520/580 nm). The optical set-

up consists of an inverted epi-fluorescence microscope

(Leica Microsystems GmbH, DMI 5000M) equipped with a

CCD camera (Leica Microsystems GmbH, DFC350 FX), a

filter cube (Leica Microsystems GmbH, excitation BP 530–

545 nm, dichroic 565 nm, barrier filter 610–675 nm) and a

100 W mercury lamp light source. The microgeometries

were continuously illuminated and pathline images were

acquired using a 109 ðNA ¼ 0:25Þ microscope objective

(Leica Microsystems GmbH) and long exposure times

(� 1s) to obtain a visual fingerprint of the flow patterns in

the focused center plane. The depth of field (DOF) for an

optical system can be calculated as (Meinhart et al. 2000):

dz ¼
nk0

NAð Þ þ
ne

NAð ÞM ; ð2Þ

Fig. 3 Sketch of the two porous medium models (dashed lines) with

the corresponding 1-D analogues of the microchannel geometry:

a symmetric configuration; b asymmetric configuration. Table 1

provides the numerical values of the geometrical parameters

Table 1 Dimensions of microchannels used

Dimensions

ðlmÞ
Projected (chrome mask) PDMS microchannels

Asymmetric Symmetric Asymmetric Symmetric

W1 100 100 108 108

W2 66 33 72 40

Wc 46 33 52 40

H 100 100 103 103

L1 100 100 106 106

L2 33 33 31 31
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where n is the refractive index, k0 is the wavelength of

the light in vacuum, NA is the numerical aperture of the

objective, e is the minimum detectable size and M is the

total magnification. For our optical set-up, e=M ¼
0:65 lm; which is a value smaller than the tracer particle

diameter, dp, and dz ¼ 12lm; which amounts to 12% of the

total channel depth.

The microchannels used in the experiments were fabri-

cated in polydimethylsiloxane (PDMS) using standard soft

lithography techniques (McDonald et al. 2000) and SU-8

photo-resist molds. PDMS elastomer has been widely used

for the fabrication of microfluidic devices, because of its

characteristics such as transparency, mechanical behavior,

biocompatibility, rapid prototyping and low cost.

The pressure drop (DP) measurements were carried out

by means of differential pressure sensors (Honeywell 26PC

series). The pressure sensors were calibrated using a static

column of water for pressures up to DP ¼ 34 kPa; and

using a compressed air line and a manometer (Wika

Instrument Corporation, model 332.50) with an accuracy

of ±2 kPa for sensors that are able to measure higher

pressure differences of up to 200 kPa. The ports of the

pressure transducers were connected to two pressure taps,

located upstream and downstream of the test section,

containing the 117 repeating units. A 12V DC power

supply (Lascar electronics, PSU 206) was used to power

the pressure sensors that were also connected to a computer

via a data acquisition card (NI USB-6218, National

Instruments) to record the output data using LabView v7.1

software. The transient response of the pressure sensors

was continuously recorded until steady-state was reached.

2.4 Packed bed column

2.4.1 Experimental set-up

The common procedure for studying flow in porous media

is to measure pressure drop across a well-defined porous

medium. Usually, a constant flow rate is imposed and

manometers or pressure transducers are used to measure

pressure differences (Duda et al. 1983). Consequently to

compare the experimental results of a real porous medium

with those of microfluidic analogs, we determined first the

pressure drop as a function of the flow rate for the packed

bed.

The experimental set-up for the packed bed column is

shown in Fig. 4. It consists of a hollow acrylic cylindrical

tube filled with unconsolidated sand. The internal diameter

of the vertical cylinder is 2.0 ± 0.1 cm. The vertical

alignment is checked with a bubble level before each

measurement. The liquid was fed to the column from a

pressurized reservoir and thus the inlet pressure could be

varied and was measured with a manometer (Wika

Instrument Corporation, model 332.50). To avoid the

fluidization of the bed, the flow inlet was placed at the top

of the column and the outlet was located at the bottom

part, where the fluid was collected and weighed along

time, in a weighing scale with a resolution of ±0.01 g.

The steady volumetric flow rate was calculated from the

measured averaged mass flow rate and the density of the

fluid. The pressure drop measurements were carried out

between two pressure taps in the column separated by a

distance of 14.7 ± 0.1 cm using differential pressure

sensors (Honeywell 26PC series) covering values up

to DP ¼ 200 kPa and a data acquisition system, as

described in Sect. 2.3 for pressure drop measurements in

microchannels.

Before each set of experiments and for each fluid, it

is essential to ensure that the sand bed possesses the

same porosity. This is achieved by loading exactly the

same mass of sand to the acrylic tube and by measuring

the same height of column sand ð14:7� 0:1 cmÞ; which

guarantees that the same sand compaction was reached.

Additionally, it was also checked using de-ionized water

that the sand exhibited the same dependence of the pressure

gradient with flow rate. New and clean sand was inserted in

the column before each set of experiments to avoid the

presence of any polymer residues in the sand from previous

tests. Moreover, to ensure accurate pressure drop mea-

surements, it has been verified that there were no air

bubbles in any part of the set-up during the experimental

runs.

Fig. 4 Experimental set-up for measuring pressure losses of flows

through a porous medium at different flow rates. Drawings are not to

scale
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We intentionally avoided the use of regulating valves in

the experimental set-up to avoid any unnecessary degra-

dation of the polymer chains beyond that already produced

as the fluid flows through the porous medium. The degra-

dation of the polymer chains due to the presence of ele-

ments in the set-up could eventually lead to a modification

of the rheology of the fluid, and subsequently to a modi-

fication in the pressure drop measurements. Moreover,

the collected fluid samples were rheologically character-

ized in simple shear and uniaxial elongational flows at the

end of its single passage through the porous medium and

compared with the corresponding rheology of the fresh

sample.

The upper left insets in the two plots of Fig. 5 show that

the steady shear viscosity of the fluids collected at the exit

of the column did not suffer any significant modification

from the original fresh sample data. However, the results of

the measurements with CaBER (insets at lower right cor-

ner) show a decrease in the relaxation time for all solutions

and cases, especially for those pertaining to higher flow

rates (Table 2). This is a consequence of the molecules

being stretched and partly broken (especially at higher flow

rates) during the strong extensional flow through the porous

medium. This effect is more visible in the PAA50 fluid,

therefore a less concentrated solution is apparently more

sensitive to modification in the molecular structure than

more concentrated solutions. According to Rodd et al.

(2005), as polymer concentration increases, the mobility of

individual polymer chains is hindered through chain–chain

interactions, resulting in anisotropic drag on the chains and/

or an overall reduction in the finite extensibility of the

polymer molecules. Thus, in the case of PAA125 fluid the

higher concentration of polymer chains increases their

interaction, and the consequent reduction of extensibility

will lead to a less significant variation of the measured

relaxation time.

2.4.2 Determination of the sand particle size

The effective particle size of sand in the porous medium

was determined, by comparison with the results obtained in

the microchannels, assuming in both cases similar variation

of pressure gradient with interstitial velocity. First, the

pressure gradient of de-ionized water flowing through the

microchannels was measured as a function of the flow rate,

and as expected for a Newtonian fluid, its pressure gradient

along the microchannels varies linearly with the flow rate

under laminar flow conditions, as shown in Fig. 6. Given

the equivalent dimensions of both microchannels and the

purely viscous behavior of water, both curves represented

in Fig. 6, corresponding to different configurations (sym-

metric and asymmetric), nearly overlap. For the micro-

channels, the velocity was determined in the narrow parts

of the geometries (width Wc), therefore this velocity scale

is representative of the interstitial velocity occurring in a

porous medium.

The laminar flow of a Newtonian fluid through a porous

medium obeys Darcy’s law (Darcy 1856):

(a)

(b)

Fig. 5 Pressure gradient as a function of the Deborah number for the

flow of the viscoelastic fluids through the porous medium. Inset

graphs show the rheological properties of the samples collected at the

exit of the porous medium at different flow rates: a PAA50;

b PAA125

Table 2 Longest relaxation times measured with CaBER of PAA

solutions after flowing through the porous medium at different flow

rates, and comparison with fresh samples (‘‘No flow’’)

Flow PAA50 ppm PAA125 ppm

Ui (m/s) k (ms) Ui (m/s) k (ms)

No flow 0 54 0 129

Flow 1 0.004 37 0.013 123

Flow 2 0.013 35 0.017 118

Flow 3 0.019 34 – –

The flow conditions are those illustrated in Fig. 5
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U ¼ k

l
�DP

L

� �
; ð3Þ

where U is the superficial fluid velocity through the bed

(U = Q/A, Q being the volumetric flow rate and A the

cross-sectional area of the column), �DP is the frictional

pressure drop across a bed of length L, l represents the

dynamic viscosity of the fluid, and k is the bed

permeability, which is a measure of the bed flow

resistance (inverse). We rewrite Eq. 3 as

�DP

L
¼ l

k0
Ui; ð4Þ

to introduce the concept of modified permeability ðk0 ¼
k=eÞ; based on the interstitial velocity (Ui ¼ U=e; with e
being the porosity of the porous medium), which is a more

adequate description of the flow resistance in the micro-

channels, while still being useful in the context of porous

media.

By fitting Eq. 4 to the experimental data set obtained

with the microchannels, it is possible to calculate the

modified permeability of the microchannels (k0MC), con-

sidering the interstitial velocity of the microchannel,

defined by UiMC
¼ Q= WcHð Þ; leading to k0MC ¼

2:7� 10�10m2:

Sands with non-spherical particles and different grain

sizes, separated using different sieves, were considered as

possible candidates for being the core material of the

packed bed column. The target was to determine which

sand size had a modified permeability similar to that cal-

culated for the microchannels. To estimate the modified

permeability of these sands ðk0PMÞ, we used the Carman–

Kozeny equation (Eq. 5) (Rhodes 2008), suitable for

laminar flow of Newtonian fluids through a randomly

packed bed of non-spherical particles:

�DP

L
¼ 180

lU

x2
32

1� eð Þ2

e3
; ð5Þ

where x32 is Sauter’s mean diameter, which represents the

diameter of a sphere having the same surface to volume

ratio as the non-spherical particles in question, and e is the

porosity of the sand (Holdich 2002). Thus, considering

Eqs. 4 and 5, the modified permeability of a porous

medium predicted by Carman–Kozeny is given by

k0PM ¼
1

180

x32e
1� e

� �2

; ð6Þ

where use was made of the relation between the interstitial

and superficial velocities in a porous medium, UiPM
¼ U=e:

Among all the particle sizes considered, we selected the

sand shown in Fig. 7, having an average particle size of

x32 ¼ 400 lm with a standard deviation of 90 lm, as

measured by low angle forward light scattering (LSTM 230

Laser Diffraction Particle Size Analyzer, Beckman Coulter

Inc.). The porosity of this sand bed was e ¼ 0:36� 0:01:

The modified permeability of this sand was calculated by

Eq. 6, resulting in k0PM ¼ 2:8� 10�10m2; corresponding to

a relative deviation with regard to the modified perme-

ability calculated for the microchannels ðk0MCÞ below 5%.

In this way, it has been confirmed that both microfluidic

systems exhibit a similar modified permeability and are

good analogues of a real porous medium when a Newto-

nian fluid is used.

3 Results and discussion

3.1 Pressure losses

Experiments with de-ionized water and aqueous polymer

solutions were done in the sand beds with x32 ¼ 400 lm.

Figure 8 shows a comparison between the pressure gradi-

ent curves as a function of the flow rate, measured for the

de-ionized water and both PAA solutions. At low flow

rates, the polymer solutions behave as Newtonian fluids

flowing through the porous medium, i.e. the flow is dom-

inated by the viscous forces. As expected, in this region the

addition of polymer enhances the pressure gradient, as a

direct consequence of having a higher viscosity (Einstein

1906). Moreover, at these low flow rates both viscoelastic

fluids exhibit similar slopes (ratio � 1:18), since for such

low shear rate range both fluids possess similar shear vis-

cosities (Fig. 1), considering the experimental uncertainty

(vertical error bars). For higher flow rates, and in spite of a

reduction in viscosity associated with the shear-thinning

Fig. 6 Pressure gradient as a function of the interstitial velocity for

the flow of a Newtonian fluid (de-ionized water) through the

asymmetric ðMCAsymÞ and symmetric ðMCSymÞ microchannels, and

through the porous medium (PM)
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nature of the polymer solutions, we observe an increase in

the slope of the pressure gradient curves for the viscoelastic

fluids as the polymer chains unravel and elastic effects are

manifested (Rodd et al. 2005). As expected, the elastic

effects are observed at an earlier stage and in a more

prominent way for the more concentrated polymer solution.

To assess the usefulness of the microfluidic devices to

mimic the flow of viscoelastic fluids through a porous

medium, the pressure gradient in the microchannels was

also measured using the PAA solutions. Figure 9 shows the

pressure gradient curves for the PAA solutions as a func-

tion of the Deborah number (De), which for an isotropic

porous medium, can be calculated as

De ¼ k
v

l
; ð7Þ

where k is the longest relaxation time measured in the

CaBER for the fresh sample, l is a characteristic length scale

(usually taken as the particle size) and v is a characteristic

velocity (Marshall and Metzner 1967). The Deborah num-

ber represents a ratio of time scales of the material (k) and

of the flow process (l/v), allowing us to compare the results

obtained in the microchannels with those obtained with the

sand bed. To calculate the Deborah number in the porous

medium corresponding to the sand bed experiments in a

meaningful way, we used the interstitial velocity ðUint ¼
U=eÞ as the characteristic velocity, and Sauter’s mean

diameter ðx32 � 400 lm) as the characteristic length scale

for the porous media. For the microchannels, we used the

velocity in the contraction sections (UiMC
¼ Q

WcH) as the

characteristic velocity, while for the characteristic length

scale we used the equivalent particle size (dpMC
� 390lm),

which was calculated using Eq. 6 considering the porosity

of the selected sand to which the microchannels are

equivalent ðe ¼ 0:36Þ and the equivalent permeability of the

microchannels ðk0MC ¼ 2:7� 10�10 m2Þ:
In Fig. 9 it can be seen that, as the velocity is increased

(and consequently De), the pressure gradient curve for the

asymmetric microchannel is progressively above the curve

for the symmetric channel. This enhanced pressure gradient

is due to two simultaneous effects:

1. The value of the Deborah number ðDe ¼ k Ui

dpMC

¼
k Q

WcHdpMC

Þ for the asymmetric arrangement is smaller

than for the symmetric geometry at the same flow rate,

because of the larger Wc; which leads to a larger slope

in the curve, since identical flow rates in both

microfluidic arrangements leads to not too dissimilar

pressure gradients.

2. It is currently widely accepted that the underlying

mechanism for the onset of purely elastic flow

instabilities is related to streamline curvature, and the

development of large hoop stresses, which generates

tension along fluid streamlines leading to flow desta-

bilization (Larson et al. 1990; Pakdel and McKinley

1996; McKinley et al. 1996; Soulages et al. 2009).

Pakdel and McKinley (1996, 1998) showed that the

critical conditions for the onset of purely elastic

instabilities can be described for a wide range of flows

by a single dimensionless parameter (M), which

accounts for elastic normal stresses and streamline

curvature:

M ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
kv

<
s11

s12

s
; ð8Þ

Fig. 7 SEM image of the sand used in the experiments, consisting of

non-spherical particles with a Sauter mean diameter of x32 ¼ 400 lm

Fig. 8 Pressure gradient curves as a function of flow rate for the

viscoelastic fluids and the Newtonian fluid (de-ionized water) for the

flow in the porous media. Dashed lines represent the linear fittings to

the Newtonian-like behavior
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where k is the relaxation time of the fluid, v is the local

streamwise fluid velocity, s11 is the local tensile stress in

the flow direction, s12 is the shear stress ðs12 ¼ g _cÞ and <
is the streamline local radius of curvature. This mechanism

for the onset of purely elastic instabilities and the appli-

cability of the M parameter to identify the critical condi-

tions for the onset of elastic instabilities was confirmed

numerically by Alves and Poole (2007) for creeping flow

of UCM fluids in smooth contractions, for a wide range of

contraction ratios. According to this argument, and since

the asymmetric configuration presents more marked

streamline curvatures, it is expected that there would be an

extra contribution to the pressure gradient. Since the onset

of elastic instabilities occurs at lower De in the asymmetric

than in the symmetric configuration, as will be shown in

the next section, this is indirect evidence for the higher

DP=L versus De slope observed for the asymmetric

microchannel.

This analysis is further corroborated in Fig. 9, where the

inset graphs show that, at very low flow rates, both

microchannels and the real porous medium exhibit similar

Newtonian-limit behavior. This is a consequence of either

the small magnitude or absence of elastic effects taking

place at low flow rates. Moreover, it is also worth noting

that the curve obtained for the real porous medium lies

between those obtained for the microchannels. In real

porous media, there indeed exists a critical value for the

Deborah number (Decr) above which the pressure gradient

rises significantly due to elastic effects that also grow with

the flow rate (Sousa et al. 2010; Rodd et al. 2005; Grois-

man et al. 2003). For the PAA solutions here considered

this critical value is De � 1:6; as it is clear from Fig. 9,

where a sudden change of slope is seen to take place for the

flow in the porous medium.

The real porous medium is in practice, a complex

combination of the two arrangements of particles simulated

with the microchannels, which can be considered as lim-

iting ideal configurations as sketched in Fig. 3. The results

show that the symmetric microchannel describes better the

viscoelastic fluid flow through a porous medium at low De

values (between the end of the Newtonian-like behavior

and the critical flow rate) than the asymmetric configura-

tion. However, extrapolating the results to higher values of

De, beyond those achieved here, it seems that the asym-

metric configuration would be a more suitable description

of the real porous medium.

For a better insight about the main factor responsible for

the different pressure gradient profiles observed in the

microchannels and for the rise-up in the slope of the

pressure-gradient variation in the porous medium, we dis-

cuss the results of the flow visualizations in the microflu-

idic analogues in the following section.

3.2 Flow visualizations

The results of the flow visualizations are presented in

Figs. 10 and 11 for the asymmetric and symmetric

microchannels, respectively.

By flowing de-ionized water through the microchannels,

small Moffatt vortices (Moffatt 1964) can be observed near

the downstream corners at low flow rates (Figs. 10a, 11a).

This is in agreement with the numerical predictions of

Oliveira et al. (2008) for Newtonian fluids in two-dimen-

sional flows at low Reynolds numbers. However, in

microfluidic geometries given the small depth of the

channels, the secondary flow is partially suppressed.

Increasing the flow rate (Re [ 10) leads to growing vorti-

ces downstream of the expansion plane (Figs. 10b, c for the

asymmetric channel and 11b, c for the symmetric chan-

nel). A similar behavior was observed in previous studies

(a)

(b)

Fig. 9 Pressure gradient as a function of the Deborah number for the

flow of the viscoelastic fluids through the asymmetric ðMCAsymÞ and

symmetric ðMCSymÞ microchannels, and through the porous medium

(PM): a PAA50; b PAA125
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for Newtonian fluids (Scott 2004; Rodd et al. 2007;

Oliveira et al. 2008).

The trends observed experimentally are similar for both

viscoelastic fluids. In the asymmetric arrangement, at very

low flow rates, small Moffatt vortices are observed near the

far corners and the flow is Newtonian-like (figures not

shown here). As the flow rate is increased, vortices appear

upstream of the contractions and grow significantly in size

due to the elastic effects (Fig. 10d, e for PAA50 and g for

PAA125). Vortex growth upstream of the contraction is

well documented for viscoelastic fluids (Scott 2004; Rodd

et al. 2007). By increasing the flow rate, these vortices

upstream of the contraction keep growing but additionally

inertial effects are also observed (Re� 1) and the small

vortex downstream of the expansion increases in size

(Fig. 10f for PAA50 and h for PAA125), until the two

vortices eventually merge (Fig. 10i for the PAA125),

occupying most of the cavity defined by the geometric

configuration. In this case, the fluid flows mainly through

the central part of the channel and the streamlines become

progressively rectilinear as the flow rate is increased and

the recirculations occupy the whole volume of the cavity.

In the case of the symmetric channel, a more diverse

range of flow features is observed. At very low flow rates,

the flow is converging and diverging as the fluid approa-

ches the contraction and expansion planes, respectively. At

these flow rates (not shown here), the viscous effects are

dominant and the flow patterns are similar to those

obtained with the Newtonian fluid (Fig. 11a), and within

each element the flow is symmetrical relative to both x- and

the y-axes. As the flow rate is increased, the flow remains

symmetric relative to the x-axis and vortex growth

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10 Visualization of flow

patterns in the asymmetric

channel of the de-ionized water

(top), PAA50 (middle) and

PAA125 (bottom) solutions for

various flow rates. Flow is from

left to right

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 11 Visualization of flow patterns in the symmetric channel of the de-ionized water (top), PAA50 (middle) and PAA125 (bottom) solutions

for various flow rates. Flow is from left to right
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upstream of the contraction is observed (Fig. 11d, e for

PAA50 and g for PAA125). Eventually, for higher flow

rates (which depends on the fluid used), the flow becomes

asymmetric as highlighted in Fig. 11f (for PAA50) and h

(for PAA125). Above a critical flow rate, the flow becomes

unsteady due to the onset of elastic instabilities and the

recirculations start growing and shrinking in certain ele-

ments in a complex pattern. There is also evidence of 3-D

flow at the highest flow rates, as shown by the crossing of

streamlines.

This analysis of the flow patterns supports the results

obtained by pressure-gradient measurements (Fig. 9),

which exhibit a slope of pressure gradient curves for the

asymmetric microchannels above the ones measured for

the symmetric configuration. The asymmetric microchan-

nel magnifies the elastic effects as a consequence of higher

streamline curvature and, therefore, the onset of the rise in

the pressure gradient curve occurs at lower flow rates

(De\0:5). In the case of the symmetric microchannel, the

streamlines are not so winding as in the asymmetric con-

figuration and this elastic effect is reduced. We note,

however, that elastic effects are also important for this

symmetric configuration, otherwise the slope of the pres-

sure gradient would decrease as De increases due to the

shear-thinning rheology of the polymer solutions. As such,

we argue that in the symmetric configuration the constant

slope of the pressure gradient curve is a consequence of the

balance between the decrease produced by shear thinning,

and the increase induced by the elastic effects. Moreover,

the appearance of the vortices occurs at higher flow rates in

the case of the asymmetric arrangement, which is a con-

sequence of having a larger Wc and its double effect,

namely a reduction of shear rate ( _c) and corresponding De

values. Therefore, these images seem to suggest that there

is a unique pressure gradient slope (Fig. 9) for the sym-

metric arrangement, with shear thinning and extensional

thickening competing approximately with the same inten-

sity, thus leading to opposite contributions to the pressure

gradient curve.

It is particularly useful to build up a De–Re flow pattern

map, as shown in Fig. 12, highlighting the different flow

patterns observed. The Reynolds number is defined as

Re ¼ qUiMC
Wc

g
; ð9Þ

where q is the density and g is the shear viscosity of the

fluid. Since the PAA fluids exhibit shear thinning behavior,

g varies with the flow rate imposed in the experiment.

A characteristic shear rate value ð _c ¼ UiMC

Wc=2
¼ 2Q

W2
c H
Þ was

considered to determine the shear viscosity value from

the flow curve (Fig. 1). Figure 12 shows that as the elas-

ticity of the fluid increases (higher slope), the range of

De–Re conditions for which small vortices are present

decreases and nearly vanishes for the PAA125 fluid. Small

vortices are followed by a symmetric vortex growth regime

and an asymmetric vortex growth region when the Deborah

number is further increased. Eventually, the flow becomes

unstable at higher De. However, it can be seen that the flow

transitions of the PAA125 fluid occur at lower flow rates

since the PAA125 fluid has a relaxation time significantly

larger than the relaxation time of the PAA50 fluid. This

indicates that elastic effects are present in a greater extent

at the same inertial flow conditions for the PAA125 fluid.

The reduction of the elasticity number (El ¼ De=Re) with

Re occurs due to shear thinning of the shear viscosity. At

very low Reynolds numbers, the elasticity number of the

PAA125 fluid is significantly larger than for the other fluid.

A high elasticity number means that inertial effects are

negligible compared to elastic effects. Therefore, vortex

growth and elastic effects are already observed at very low

Reynolds numbers for the PAA125 fluid, leading to an

effective way of separating elastic effects from inertia-

driven effects in the more concentrated fluid.

4 Conclusions

In this work, we have shown that microfluidic devices with

special geometrical configurations can be used to study

viscoelastic flow phenomena of aqueous polymer solutions

occurring in porous media, but more than one geometric

configuration may be required to represent the behavior in

a wide range of flow rates. In our investigations, we used

microchannels consisting of a sequence of contractions/

expansions disposed in symmetrical and asymmetrical

arrangements, which have been fabricated by soft lithog-

raphy techniques. Both microchannels are shown to be

Fig. 12 De–Re flow pattern map for symmetric microchannels
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good porous medium analogues, despite their geometrical

simplicity, as revealed by the good agreement in the

pressure gradient results with the equivalent porous med-

ium measurements for Newtonian liquids.

Additionally, the validity of these porous medium ana-

logues for viscoelastic fluids has also been assessed. Due to

the intrinsic differences in the extensional rate profiles

defined by each microgeometry, the symmetric configura-

tion is found to be more suitable for studying the flow of

viscoelastic fluids at low De values, while the asymmetric

microchannel gives better results at flow rates above the

critical De. In this way, both microgeometries seem to be

complementary and are very interesting tools to study the

flow of viscoelastic fluids through a porous medium, as a

result of the advantages associated with the use of optical

techniques.
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dans les questions de distribution d’eau. Victor Dalmont, Paris

Devasenathipathy S, Santiago JG, Wereley ST, Meinhart CD,

Takehara K (2003) Particle imaging techniques for microfabri-

cated fluidic systems. Exp Fluids 34:504514

Duda JL, Hong SA, Klaus EE (1983) Flow of polymer solutions in

porous media: Inadequacy of the capillary model. Ind Eng Chem

Fundam 22:299–305

Einstein A (1906) Eine neue Bestimmung der Moleküldimensionen.
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