Picture of mobile phone running fintech app

Fintech: Open Access research exploring new frontiers in financial technology

Strathprints makes available Open Access scholarly outputs by the Department of Accounting & Finance at Strathclyde. Particular research specialisms include financial risk management and investment strategies.

The Department also hosts the Centre for Financial Regulation and Innovation (CeFRI), demonstrating research expertise in fintech and capital markets. It also aims to provide a strategic link between academia, policy-makers, regulators and other financial industry participants.

Explore all Strathclyde Open Access research...

The finite-volume method in computational rheology

Afonso, A.M. and Oliveira, Monica and Oliveira, P.J. and Alves, M.A. and Pinho, F.T. (2012) The finite-volume method in computational rheology. In: Finite-Volume Methods - Powerful Means of Engineering Design. In-Tech Open Publishers, Ch 7, pp 141-170. ISBN 978-953-51-0445-2


Download (1MB) | Preview


The finite volume method (FVM) is widely used in traditional computational fluid dynamics (CFD), and many commercial CFD codes are based on this technique which is typically less demanding in computational resources than finite element methods (FEM). However, for historical reasons, a large number of Computational Rheology codes are based on FEM. There is no clear reason why the FVM should not be as successful as finite element based techniques in Computational Rheology and its applications, such as polymer processing or, more recently, microfluidic systems using complex fluids. This chapter describes the major advances on this topic since its inception in the early 1990’s, and is organized as follows. In the next section, a review of the major contributions to computational rheology using finite volume techniques is carried out, followed by a detailed explanation of the methodology developed by the authors. This section includes recent developments and methodologies related to the description of the viscoelastic constitutive equations used to alleviate the high-Weissenberg number problem, such as the log-conformation formulation and the recent kernel-conformation technique. At the end, results of numerical calculations are presented for the well-known benchmark flow in a 4:1 planar contraction to ascertain the quality of the predictions by this method.