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Abstract

We use the lubrication approximation to analyse three closely related problems involving a thin

rivulet or ridge (i.e. a two-dimensional droplet) of fluid subject to a prescribed uniform transverse

shear stress at its free surface due to an external airflow, namely a rivulet draining under gravity

down a vertical substrate, a rivulet driven by a longitudinal shear stress at its free surface, and a

ridge on a horizontal substrate, and find qualitatively similar behaviour for all three problems. We

show that, in agreement with previous numerical studies, the free surface profile of an equilibrium

rivulet/ridge with pinned contact lines is skewed as the shear stress is increased from zero, and that

there is a maximum value of the shear stress beyond which no solution with prescribed semi-width

is possible. In practice, one or both of the contact lines will de-pin before this maximum value

of the shear stress is reached, and so we consider situations in which the rivulet/ridge de-pins

at one or both contact lines. In the case of de-pinning only at the advancing contact line, the

rivulet/ridge is flattened and widened as the shear stress is increased from its critical value, and

there is a second maximum value of the shear stress beyond which no solution with a prescribed

advancing contact angle is possible. In contrast, in the case of de-pinning only at the receding

contact line, the rivulet/ridge is thickened and narrowed as the shear stress is increased from its

critical value, and there is a solution with a prescribed receding contact angle for all values of the

shear stress. In general, in the case of de-pinning at both contact lines there is a critical “yield”

value of the shear stress beyond which no equilibrium solution is possible and the rivulet/ridge

will evolve unsteadily. In an Appendix we show that an equilibrium rivulet/ridge with prescribed

flux/area is quasi-statically stable to two-dimensional perturbations.
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I. INTRODUCTION

Films, rivulets and droplets of fluid subject to various external airflows occur in many

situations ranging from the everyday (such as, for example, rainwater on the windows of a

moving vehicle) to engineering applications such as in ice accretion on aircraft wings (see,

for example, Myers and Charpin1), in air-knife and spin-coating processes (see, for example,

Chou and Wu2), and even in the rain-wind induced vibrations of the cables of cable-stayed

bridges (see, for example, Robertson et al.3). As a result, there has been a significant amount

of both theoretical and experimental research into the behaviour of fluid films, rivulets and

droplets subject to external pressure and/or surface-shear-stress effects (see, for example,

Fan, Wilson and Kapur4). In particular, there has been considerable interest in the critical

“yield” value of the shear stress beyond which a droplet on a substrate cannot remain at a

fixed location but is displaced along it, perhaps ultimately becoming completely detached

from it.

In their pioneering work Li and Pozrikidis5, Dimitrakopoulos and Higdon6,7, Schleizer and

Bonnecaze8, Yon and Pozrikidis9, and Dimitrakopoulos10 used boundary-integral methods

to study either a two-dimensional or a three-dimensional droplet on a planar substrate in

a shear flow. The effects of fluid inertia were investigated for a two-dimensional droplet

by Zhang, Miksis and Bankoff11 using a front-tracking method and for a three-dimensional

droplet by Spelt12 using a level-set method and by Ding and Spelt13 and Ding, Gilani and

Spelt14 using a diffuse-interface method. Depending on the details of the specific problem

considered, these authors demonstrated and quantified initial deformation possibly followed

by subsequent de-pinning, sliding, pinch-off, and even perhaps complete detachment of the

droplet from the substrate as the strength of the shear flow is increased. Researchers have

also used approximate and/or asymptotic approaches which complement and help to elu-

cidate the results of these numerical investigations. For example, King and Tuck15 used

thin-aerofoil theory to analyse the possible equilibrium solutions for a thin two-dimensional

droplet supported against gravity on an inclined planar substrate by an external air flow.

More recently, Sugiyama and Sbragaglia16 obtained a series solution for a hemispherical

droplet in a shear flow and, in particular, used it to obtain an approximate solution for

a weakly deformed droplet. In her pioneering work Dussan V.17 used the lubrication ap-
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proximation together with the additional assumption that the contact-angle hysteresis (i.e.

the difference between the advancing and the retreating contact angles) is much smaller

than the retreating contact angle to obtain an approximate expression for the critical value

of the shear stress for a thin three-dimensional droplet, and Dimitrakopoulos and Higdon6

(Appendix) obtained the corresponding result for a thin two-dimensional droplet. However,

perhaps unsurprisingly in view of the rather restrictive assumption they made about the

contact-angle hysteresis, by comparing it with their numerical results Dimitrakopoulos and

Higdon6 found that this latter expression has only a very limited range of validity. Dimi-

trakopoulos and Higdon6 suggested relaxing the restriction on the contact-angle hysteresis,

and did so in a limited manner by calculating the next order term in the asymptotic expan-

sion of the critical value of the shear stress in the limit of small contact-angle hysteresis. In

the present work we will remove this restriction and permit arbitrary contact-angle hysteresis

consistent with the lubrication approximation.

The aim of the present work is to use the lubrication approximation to analyse three

closely related problems involving a thin fluid rivulet or ridge (i.e. a two-dimensional droplet)

subject to a prescribed uniform transverse shear stress at its free surface due to an external

airflow, namely a rivulet draining under gravity down a vertical substrate, a rivulet driven

by a longitudinal shear stress at its free surface, and a ridge on a horizontal substrate. Note

that, unlike for a ridge, there has been very little work on a rivulet subject to a prescribed

uniform transverse shear stress at its free surface. A rare example is the work of Darhuber

et al.18 who used the lubrication approximation to study the deformation of and the mixing

within a thin rivulet with pinned contact lines subject to a prescribed uniform temperature

gradient (resulting in a prescribed uniform thermocapillary shear stress at its free surface).

Like Dussan V.17 and Dimitrakopoulos and Higdon6 (Appendix) we use the lubrication

approximation, but unlike them we do not place any further restriction on the contact-angle

hysteresis, and thus are able to determine the deformation and de-pinning of thin rivulets

and ridges for arbitrarily (small) contact angles. In particular, we explore situations in which

both contact lines are pinned (as examined for a two-dimensional droplet by, for example,

Schleizer and Bonnecaze8 and for a shear-driven rivulet by Darhuber et al.18) and in which

de-pinning occurs at the advancing contact line (as examined for a two-dimensional droplet

4



FIG. 1: Geometry of a gravity-driven rivulet on a vertical substrate subject to a prescribed transverse shear

stress τ .

by, for example, Dimitrakopoulos and Higdon6) or at the retreating contact line, as well

as determining the critical “yield” condition (corresponding to de-pinning at both contact

lines).

II. A GRAVITY-DRIVEN RIVULET

Consider the unsteady flow of a thin gravity-driven rivulet of fluid on a vertical substrate

subject to a prescribed transverse shear stress τ at its free surface. Cartesian axes Oxyz are

chosen with the x-axis vertically downwards, the y-axis parallel to the substrate z = 0, and

the z-axis normal to the substrate, and g = (g, 0, 0) denotes acceleration due to gravity, as

shown in Figure 1. Without loss of generality, we take τ ≥ 0 so that the shear stress acts

from left to right in Figure 1. The fluid is assumed to be Newtonian with constant density

ρ, viscosity µ, and surface tension γ. The velocity u = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t))

and pressure p = p(x, y, z, t) of the fluid are governed by the familiar mass-conservation

and Navier–Stokes equations subject to the usual normal and tangential stress balances and

the kinematic condition at the free surface z = h(x, y, t), and no-slip and no-penetration

conditions at the substrate z = 0. The positions of the contact lines are denoted by y =

a1(x, t) and y = a2(x, t), where a1 < a2, so that h(a1) = h(a2) = 0, and the rivulet has

(small) contact angles β1 = β1(x, t) and β2 = β2(x, t) at y = a1 and y = a2, respectively,

given by

β1 =
hy − a1xhx

[1 + (a1x)2]
1

2

∣

∣

∣

∣

∣

y=a1

, β2 = − hy − a2xhx

[1 + (a2x)2]
1

2

∣

∣

∣

∣

∣

y=a2

. (1)

For most of the present work we will be concerned with equilibrium solutions which are

independent of x with parallel contact lines a1 = a10 and a2 = a20, constant contact angles

β1 = β10 and β2 = β20, and free surface profile h = h0(y). In the general case τ > 0 we

have β10 < β20, while in the special case τ = 0 we have β10 = β20 = β0, say. However, in

Appendix A we will consider the quasi-static stability of these equilibrium solutions, and in

that part of the work we will follow many previous authors (including Davis19, Weiland and
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Davis20, and Young and Davis21) and assume that the normal velocities of the contact lines

are related to their respective contact angles by the general “Tanner Laws”

a1t

[1 + (a1x)2]
1

2

= −κF1(β1),
a2t

[1 + (a2x)2]
1

2

= κF2(β2), (2)

where κ (> 0) is an empirically determined constant with the dimensions of velocity. The

dimensionless functions F1(β1) and F2(β2) satisfy F1(β10) = 0 and F2(β20) = 0, and are

monotonically increasing near β1 = β10 and β2 = β20, respectively.

We non-dimensionalise according to

x = Lx∗, y = Ly∗, a1 = La∗

1, a2 = La∗

2, z = β0Lz∗, h = β0Lh∗,

β1 = β0β
∗

1 , β2 = β0β
∗

2 , p − p∞ =
β0γ

L
p∗, τ =

β2
0γ

L
τ ∗, t =

L

β0κ
t∗, (3)

u =
β3

0γ

µ
u∗, v =

β3
0γ

µ
v∗, w =

β4
0γ

µ
w∗,

where L = β
1/2
0 l is a typical length scale in the x and y directions, and p∞ is the uniform

atmospheric pressure, where l = (γ/ρg)1/2 is the capillary length. For clarity we immediately

drop the star superscripts on non-dimensional variables.

At leading order in β0 ≪ 1 the mass-conservation and Navier–Stokes equations are

ux + vy + wz = 0 (4)

and

0 = −px + 1 + uzz, 0 = −py + vzz, 0 = −pz, (5)

to be solved subject to conditions of no slip and no penetration at the substrate,

u = v = w = 0 on z = 0, (6)

and balances of normal and tangential stress at the free surface,

p = −∇2h, uz = 0 and vz = τ on z = h, (7)

where ∇2 denotes the two-dimensional Laplacian. Solving (4) and (5) subject to (6) and (7)

yields

p = −∇2h, u =
px − 1

2
(z − 2h)z, v =

py

2
(z − 2h)z + τz,

w = −∇2p

6
(z − 3h)z2 + [(px − 1)hx + pyhy]

z2

2
. (8)
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The kinematic free-surface condition can be written as

Cht + ∇ · (ū, v̄) = 0, (9)

where ū = ū(x, y, t) and v̄ = v̄(x, y, t) are the local fluxes in the x and y directions, respec-

tively, namely

ū =

∫ h

0

u dz = −(px − 1)h3

3
, v̄ =

∫ h

0

v dz = −pyh
3

3
+

τh2

2
, (10)

and C = µκ/β2
0γ is a capillary number. Hence the free surface profile h satisfies the partial

differential equation

Cht +

(

h3

3

)

x

+ ∇ ·
(

h3

3
∇∇2h

)

+

(

τh2

2

)

y

= 0. (11)

The longitudinal volume flux Qg = Qg(x, t) through a transverse cross-section of the

rivulet x = constant is given by

Qg =

∫ a2

a1

ū dy = −
∫ a2

a1

(px − 1)h3

3
dy. (12)

III. A SHEAR-DRIVEN RIVULET AND A RIDGE

The analysis in Section II concerns a gravity-driven rivulet on a vertical substrate, here-

after referred to simply as a “gravity-driven rivulet”, but similar analyses apply to two other

closely related problems, namely, a rivulet of fluid on a planar substrate driven by a pre-

scribed longitudinal shear stress T , hereafter referred to simply as a “shear-driven rivulet”,

and a ridge of fluid on a horizontal substrate, hereafter referred to simply as a “ridge”.

Proceeding as for the gravity-driven rivulet with L = β2
0γ/T for the shear-driven rivulet

and L left general for the ridge, but for simplicity restricting our attention to the case L ≪ l

so that we may neglect the effect of gravity entirely, p and v are again given by (8) and w

is given by

w = −∇2p

6
(z − 3h)z2 + (pxhx + pyhy)

z2

2
. (13)

For the shear-driven rivulet

u =
px

2
(z − 2h)z + z, (14)
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and hence h satisfies

Cht +

(

h2

2

)

x

+ ∇ ·
(

h3

3
∇∇2h

)

+

(

τh2

2

)

y

= 0, (15)

and the longitudinal volume flux Qs = Qs(x, t) through a transverse cross-section x =

constant is given by

Qs =

∫ a2

a1

ū dy =

∫ a2

a1

−pxh
3

3
+

h2

2
dy. (16)

For the ridge

u =
px

2
(z − 2h)z, (17)

and hence h satisfies

Cht + ∇ ·
(

h3

3
∇∇2h

)

+

(

τh2

2

)

y

= 0, (18)

and the area A = A(x, t) of a transverse cross-section x = constant is given by

A =

∫ a2

a1

h dy. (19)

As a result of their strong similarities, in the remainder of this work we shall present

results for all three problems in parallel, and, when results apply to all three, we simply

refer to the “rivulet/ridge”.

IV. EQUILIBRIUM SOLUTIONS

As we have already mentioned, the rivulet/ridge has equilibrium solutions which are

independent of x with parallel contact lines a1 = a10 and a2 = a20 and constant contact

angles β1 = β10 and β2 = β20. In this Section we describe the basic properties of these

solutions (denoted with a subscript zero), and in order to do this it is convenient to choose

the (arbitrary) location of the origin so that the contact lines are at y = ±a0, where a0

is the semi-width of the rivulet/ridge. Hence for all three problems the free surface profile

h0 = h0(y) satisfies the third-order nonlinear ordinary differential equation

h0h
′′′

0 +
3τ

2
= 0 (20)

and the boundary conditions

h0(±a0) = 0, h′

0(−a0) = β10, h′

0(+a0) = −β20, (21)

where a prime (′) denotes differentiation with respect to argument.
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A. Local behaviour near the contact lines

Local analysis of (20) near the contact lines reveals that when β10 > 0 the free surface

near the left-hand contact line behaves according to

h0 = β10(a0 + y) − 3τ

4β10

(a0 + y)2 ln(a0 + y) + O(a0 + y)2 (22)

as y → −a+
0 , and when β20 > 0 the free surface near the right-hand contact line behaves

according to

h0 = β20(a0 − y) +
3τ

4β20

(a0 − y)2 ln(a0 − y) + O(a0 − y)2 (23)

as y → +a−

0 , showing that h′′

0 is, in general, logarithmically singular at both contact lines.

B. Free surface profile

Integrating (20) once and evaluating the resulting expression at y = −a0 using (22) leads

to

h0h
′′

0 −
1

2
(h′

0

2 − β2
10) +

3τ

2
(y + a0) = 0. (24)

In particular, at any stationary point of h0, denoted by h0 = hm at y = ym, where −a0 <

ym < +a0, we have h′

0 = 0, so that from (24) we have

hmh′′

0(ym) = −1

2
β2

10 −
3τ

2
(ym + a0) < 0. (25)

Thus we deduce that any stationary point must be a maximum, and hence that the free

surface profile of the rivulet/ridge must always have a single maximum h0 = hm at y = ym.

C. Transverse force balance

Evaluating (24) at y = a0 using (23) yields an important relationship between the contact

angles β10 and β20, the rivulet/ridge semi-width a0 and the shear stress τ , namely

β2
20 − β2

10 = 6τa0. (26)

Physically (26) represents a transverse balance of forces due to capillary and shear-stress

effects.
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D. Longitudinal velocity

In equilibrium p0x = 0, and hence from (8), (14) and (17) the longitudinal velocity u0 is

given by u0 = (2h0 − z) z/2 for the gravity-driven rivulet (with maximum velocity u0 = h2
m/2

at y = ym and z = hm), u0 = z for the shear-driven rivulet (with maximum velocity u0 = hm

at y = ym and z = hm), and u0 ≡ 0 for the ridge, respectively.

From (12) the longitudinal volume flux of a gravity-driven rivulet is

Qg =
1

3

∫ +a0

−a0

h3
0 dy, (27)

from (16) the longitudinal volume flux of a shear-driven rivulet is

Qs =
1

2

∫ +a0

−a0

h2
0 dy, (28)

while from (19) the cross-sectional area of a ridge is

A =

∫ +a0

−a0

h0 dy. (29)

E. Transverse velocities

In equilibrium p0x = 0 and p0y = 3τ/2h0, and hence from (8) and (13) the transverse

velocities v0 and w0 are given by

v0 =
τ

4h0

(3z − 2h0)z, w0 =
τh′

0

4h2
0

z3; (30)

therefore the stream function of the transverse flow ψ0 = ψ0(y, z), defined by v0 = ψ0z,

w0 = −ψ0y and ψ0 = 0 on z = 0, is given by

ψ0 =
τ

4h0

(z − h0)z
2, (31)

in agreement with the corresponding analytical results given by King and Tuck15 (their

Eq. (A1)) and Darhuber et al.18 (their Eq. (4.2) and (4.3)), and with the numerical results

obtained by Dimitrakopoulos and Higdon6 (their Fig. 4). At any stagnation point of the

transverse flow we have v0 = w0 = 0, implying from (30) that either z = 0 or z = 2h0/3

and h′

0 = 0, and hence (since h0 always has a single maximum h0 = hm at y = ym) that

the transverse flow always has a single interior stagnation point at y = ym and z = 2hm/3.
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The clockwise transverse “circulation flux” about this stagnation point is given by −ψ0

evaluated at the stagnation point, and hence is equal to τh2
m/27 (> 0). Note that for both

a gravity-driven and a shear-driven rivulet (but not, of course, for a ridge) the combination

of longitudinal and transverse velocities means that fluid particles spiral (clockwise) along

the rivulet in a helical manner, as described by Darhuber et al.18 for a rivulet subject to a

prescribed uniform shear stress at its free surface.

F. Solutions with prescribed volume flux or area

Thus far the discussion has been for an equilibrium rivulet/ridge with general values

of β10, β20, τ and a0 satisfying (26) whose longitudinal volume flux or area is given by

(27), (28) or (29), respectively. However, in order to investigate the effect of varying the

transverse shear stress τ in a systematic way it is sensible to consider a rivulet/ridge with

prescribed flux/area as τ is increased from zero. Physically we may interpret this as the

quasi-equilibrium development of a rivulet/ridge with prescribed flux/area as the shear stress

is slowly increased from zero. Prescribing the values of the shear stress τ and the flux/area

means that one of the remaining three quantities β10, β20 and a0 must also be prescribed. The

most physically sensible way to do this is firstly to prescribe the semi-width a0 (corresponding

to a rivulet/ridge with two pinned contact lines and with the unknown contact angles β10

and β20 determined as part of the solution), then to prescribe β10 or β20 (corresponding

to a rivulet/ridge with one pinned and one de-pinned contact line and with the unknown

semi-width a0 and the other contact angle determined as part of the solution), and finally

to prescribe β10 and β20 (corresponding to the critical “yield” condition beyond which no

equilibrium solutions are possible).

In the special case of no transverse shear stress, τ = 0, the rivulet/ridge has the familiar

parabolic free surface profile h0 = H0(y) given by

H0 =
a2

0 − y2

2a0

(32)

with maximum height hm = a0/2 at y = 0 and equal contact angles β10 = β20 = 1, and

(27)–(29) yield

Qg =
4a4

0

105
, Qs =

2a3
0

15
, A =

2a2
0

3
, (33)
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respectively. For simplicity of presentation in what follows we choose (without loss of gen-

erality) the prescribed flux/area values to be

Qg =
4

105
, Qs =

2

15
, A =

2

3
, (34)

corresponding to setting a0 = 1 in the appropriate expressions in the case τ = 0 given by

(33). Note, however, that prescribing Qg, Qs and A according to (34) does not guarantee

that a0 = 1 for all τ > 0; indeed determining when and how a0 varies as τ is varied is one

of the key issues discussed in Sections V and VI.

In Appendix A we show that an equilibrium ridge/rivulet with prescribed flux/area is

quasi-statically stable to two-dimensional perturbations.

V. PINNED SOLUTIONS WITH PRESCRIBED SEMI-WIDTH

In this Section we describe the development of the equilibrium rivulet/ridge solutions with

prescribed semi-width a0 = 1 but varying β10 and β20 as τ is increased from zero. Physically

we may interpret these solutions as a rivulet/ridge with pinned (i.e. fixed) contact lines but

varying contact angles. Note that the results obtained in this Section are in qualitative

agreement with those of Schleizer and Bonnecaze8 for a two-dimensional droplet in a shear

flow, and with those of Darhuber et al.18 for a rivulet subject to a prescribed uniform shear

stress at its free surface.

A. Limit of small transverse shear stress, τ → 0+

In the limit of small transverse shear stress, τ → 0+, the free surface profile h0 = h0(y)

takes the form h0 = H0(y) + τH1(y) + O(τ 2), where H0 is given by (32) and H1 satisfies

H ′′′

1 = − 3

1 − y2
(35)

subject to the fixed-contact-line conditions

H1(±1) = 0 (36)

and the prescribed flux/area condition
∫ +1

−1

Hn−1
0 H1 dy = 0, (37)
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where n = 3 for a gravity-driven rivulet, n = 2 for a shear-driven rivulet and n = 1 for a

ridge. Solving (35) subject to (36) and (37) shows that, rather unexpectedly, H1 is the same

for all three problems, namely

H1 =
3

4

[

(1 − y)2 ln(1 − y) − (1 + y)2 ln(1 + y) + 4y ln 2
]

. (38)

In particular, (38) shows that H1 < 0 when −1 < y < 0, H1 > 0 when 0 < y < 1,

β10 = 1 − 3

2
τ + O(τ 2), (39)

β20 = 1 +
3

2
τ + O(τ 2), (40)

hm =
1

2
+

9

8
(2 ln 2 − 1)2τ 2 + O(τ 4), (41)

ym =
3

2
(2 ln 2 − 1)τ + O(τ 3), (42)

revealing that the effect of a small transverse shear stress is to push the rivulet/ridge down

on the left and up on the right, i.e. to skew the rivulet/ridge to the right.

B. General case of non-zero transverse shear stress, τ > 0

In the general case of non-zero transverse shear stress, τ > 0, the rivulet/ridge is non-

symmetric with 0 < β10 < β20 and the free surface profile is obtained by solving (20) subject

to (21) and the prescribed flux/area condition numerically. This was done by converting the

problem into an initial value problem by using the local behaviour of h0 either near y = −a0

given by (22) or near y = a0 given by (23) to generate approximate initial conditions which

were imposed close to (but not at) the appropriate contact line. For example, using (22)

yields the approximate initial conditions

h0(−a0 + δ) = β10δ −
3τ

4β10

δ2 ln δ + kδ2, (43)

h′

0(−a0 + δ) = β10 −
3τ

4β10

(2δ log δ + δ) + 2kδ, (44)

h′′

0(−a0 + δ) = − 3τ

4β10

(2 log δ + 3) + 2k, (45)

where δ ≪ 1 was chosen to be sufficiently small (typically δ = 10−6) and k is a free parameter.

Solutions were then obtained by iterating τ and k for a given value of β10 until the conditions

13



FIG. 2: Free surface profiles z = h0(y) of a gravity-driven rivulet for τ = 0, 0.08, 0.16, 0.24, 0.32 and

τmax ≃ 0.3646. The corresponding profiles for a shear-driven rivulet and for a ridge are qualitatively similar.

FIG. 3: Plot of (a) the contact angles β10 and β20, (b) the maximum height of the rivulet/ridge hm, and (c)

the location of the maximum height of the rivulet/ridge ym, as functions of τ for each of the three problems.

of zero height at the other contact line, h(a0) = 0, and of prescribed flux/area were satisfied

to within an appropriate tolerance (typically 10−6). The consistency of the numerical results

obtained was checked by substituting the values of β10, β20, τ and a0 into the transverse

balance of forces (26).

Figure 2 shows numerically calculated free surface profiles of a gravity-driven rivulet with

a0 = 1 for various values of τ , illustrating how the profile becomes increasingly skewed to the

right as τ is increased from zero. The corresponding profiles for a shear-driven rivulet and

for a ridge are qualitatively similar and hence are omitted for brevity. Figure 3 shows how

the contact angles β10 and β20, the maximum height hm, and the location of the maximum

height ym, vary with τ . In particular, Figure 3 shows that for all three problems β20 (> 1),

hm (> 1/2) and ym (> 0) increase monotonically while β10 (< 1) decreases monotonically

(with, of course, a0 = 1) as τ is increased from zero. Figure 3 also shows that there is a

maximum value of τ , denoted by τmax, at which β10 = 0, and hence from (26) at which

β20 = βmax = (6τmax)
1/2, beyond which no equilibrium solution with prescribed semi-width

a0 = 1 is possible. Table I gives the values of τmax and the corresponding maximum values

of β20 = βmax, hm and ym when τ = τmax for each of the three problems.

VI. DE-PINNED SOLUTIONS WITH VARIABLE SEMI-WIDTH

Thus far we have considered only pinned contact lines; however, a contact line will not, in

general, remain pinned for all values of its contact angle, and typically there is a finite range

of possible equilibrium contact angles, denoted by βR ≤ β ≤ βA, where βA and βR are the

so-called advancing and receding contact angles, respectively. As, for example, Dussan V.17

and Blake and Ruschak22 describe, the advancing angle βA is the largest value that β can

take before the contact line begins to advance, the receding angle βR is the smallest value
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Gravity-driven Rivulet Shear-driven Rivulet Ridge

τmax 0.3646 0.3730 0.3924

βmax 1.4791 1.4959 1.5344

hm 0.5149 0.5208 0.5342

ym 0.1962 0.1962 0.1962

TABLE I: Values of τmax and the corresponding maximum values of β20 = βmax, hm and ym when τ = τmax

for each of the three problems.

that β can take before the contact line begins to recede, and the values of βA and βR depend

on the properties of the fluid and of the substrate. This means that, in practice, one or

both of the contact lines will de-pin before the maximum value τ = τmax is reached. Hence

in this Section we extend the analysis presented in Section V for equilibrium rivulets/ridges

with prescribed semi-width a0 = 1 but varying contact angles to equilibrium rivulets/ridges

with varying semi-width a0 6= 1 but one or two prescribed contact angles, namely β10 = βR

and/or β20 = βA. Specifically, in the next three Subsections we consider rivulets/ridges

that de-pin only at the advancing (i.e. right-hand) contact line, only at the receding (i.e.

left-hand) contact line, and at both contact lines, respectively.

In what follows we denote the critical value of τ at which de-pinning first occurs, i.e. the

critical value of τ at which the solution with prescribed semi-width described in Section V

predicts that either β10 = βR or β20 = βA, by τ = τdepin. When τ < τdepin the solutions

with prescribed semi-width a0 = 1 described in Section V still apply, but when τ > τdepin

we solve (20) subject to (21) and the prescribed flux/area condition with either β10 = βR

or β20 = βA prescribed, as appropriate, and calculate values of the semi-width, a0 6= 1, and

the other contact angle, β10 or β20, as part of the solution. In these latter calculations it is

again convenient to choose the (arbitrary) location of the origin so that the contact lines are

at y = ±a0 (where, in general, a0 6= 1); however, since the location of the origin is arbitrary,

when τ > τdepin we may interpret the de-pinned solutions with the pinned contact line at

either y = −1 or y = 1, as appropriate.
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FIG. 4: Free surface profiles z = h0(y) of a gravity-driven rivulet with advancing contact angle β20 =

βA = 1.3 for τ = τdepin ≃ 0.2208, 0.2266, 0.2324, 0.2382, 0.2440, 0.2498 and τdepinmax ≃ 0.2557. The

corresponding profiles for a shear-driven rivulet and for a ridge are qualitatively similar.

FIG. 5: Plot of (a) the semi-width a0, (b) the contact angles β10 and β20, (c) the maximum height of the

rivulet/ridge hm, and (d) the location of the maximum height of the rivulet/ridge ym, for a rivulet/ridge

with advancing contact angle βA = 1.3 as a function of τ for each of the three problems. The three vertical

dashed lines indicate the appropriate values of τdepin.

A. De-pinning Only at the Advancing Contact Line

To illustrate a rivulet/ridge that de-pins only at the advancing (i.e. right-hand) contact

line we choose βA = 1.3 and βR = 0, but note that any other value of βA satisfying 1 <

βA < βmax will give qualitatively similar results. Table II gives the values of τdepin and the

corresponding values of β10, hm and ym when τ = τdepin for each of the three problems in the

case βA = 1.3. Note that the results obtained in this Subsection are in qualitative agreement

with those obtained by Dimitrakopoulos and Higdon6 for a two-dimensional droplet in a

shear flow.

Figure 4 shows the free surface profiles z = h0(y) of a gravity-driven rivulet for various

values of τ ≥ τdepin ≃ 0.2208 illustrating how the profile is further skewed to the right,

and is flattened and widened as τ is increased from τdepin. The corresponding profiles for

a shear-driven rivulet and for a ridge are qualitatively similar and hence are omitted for

brevity.

Figure 5 shows how the semi-width a0, the contact angles β10 and β20, the maximum

height hm, and the location of the maximum height ym, vary with τ . In particular, this

figure shows that for all three problems a0 (> 1) and ym increase monotonically while β10

and hm decrease monotonically (with, of course, β20 = βA) as τ is increased from τdepin.

Figure 5 also shows that, as in the case of a rivulet/ridge with two pinned contact lines,

there is a maximum value of τ , denoted now by τdepinmax, at which β10 = 0, and hence

from (26) at which a0 = a0max = β2
A/(6τdepinmax), beyond which no equilibrium solutions

with prescribed advancing contact angle β20 = βA is possible. Table III gives the values of
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Gravity-driven Rivulet Shear-driven Rivulet Ridge

τdepin 0.2208 0.2187 0.2149

β10 0.6041 0.6145 0.6330

hm 0.5054 0.5070 0.5099

ym 0.1236 0.1217 0.1183

TABLE II: Values of τdepin and the corresponding values of β10, hm and ym when τ = τdepin for each of

the three problems in the case βA = 1.3.

Gravity-driven Rivulet Shear-driven Rivulet Ridge

τdepinmax 0.2557 0.2565 0.2593

a0max 1.1016 1.0981 1.0864

hm 0.4986 0.4970 0.4917

ym 0.3178 0.3136 0.2996

TABLE III: Values of τdepinmax and the corresponding values of a0 = a0max, hm and ym when τ = τdepinmax

for each of the three problems in the case βA = 1.3.

τdepinmax and the corresponding values of a0 = a0max, hm and ym when τ = τdepinmax for each

of the three problems in the case βA = 1.3. Note that a0 and ym attain their maximum

values given in Table III at τ = τdepinmax, while hm attains its maximum value given in Table

II at τ = τdepin. Furthermore, note that for all three problems the values of τmax given in

Table I and the corresponding values of τdepinmax given in Table III satisfy τdepinmax < τmax,

i.e. a rivulet/ridge that has de-pinned at the advancing contact line cannot exist for as large

a transverse shear stress as the corresponding one with two pinned contact lines.

B. De-pinning Only at the Receding Contact Line

To illustrate a rivulet/ridge that de-pins only at the receding (i.e. left-hand) contact

line we choose βR = 0.5 and βA = ∞, but note that any other value of βR satisfying

0 < βR < 1 will give qualitatively similar results. Table IV gives the values of τdepin and the

corresponding values of β20, hm and ym when τ = τdepin for each of the three problems in
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FIG. 6: Free surface profiles z = h0(y) of a gravity-driven rivulet with receding contact angle β10 = βR = 0.5

for τ = τdepin ≃ 0.2635, 0.3, 0.4, 0.5, . . . , 1.7, 1.8, 2, 5, 10, 15, 20 and 25. The corresponding profiles for a

shear-driven rivulet and for a ridge are qualitatively similar.

FIG. 7: Plot of (a) the semi-width a0, (b) the contact angles β10 and β20, (c) the maximum height of the

rivulet/ridge hm, and (d) the location of the maximum height of the rivulet/ridge ym, for a rivulet/ridge with

receding contact angle βR = 0.5 as a function of τ for each of the three problems. In part (a) the leading order

asymptotic behaviours of a0 in the limit of large transverse shear stress τ → ∞, given by a0 ∼ 0.7594 τ−3/11

for a gravity-driven rivulet, a0 ∼ 0.7815 τ−1/4 for a shear-driven rivulet, and a0 ∼ 0.8294 τ−1/5 for a ridge,

are shown with dashed lines. The three vertical dashed lines (which are impossible to distinguish in part

(a)) indicate the appropriate values of τdepin.

the case βR = 0.5.

Figure 6 shows the free surface profiles z = h0(y) of a gravity-driven rivulet for various

values of τ ≥ τdepin ≃ 0.2635 illustrating how the profile is again further skewed to the

right but (in contrast to the case of a rivulet that de-pins only at the advancing contact

line) is thickened and narrowed as τ is increased from τdepin. The corresponding profiles for

a shear-driven rivulet and for a ridge are qualitatively similar and hence are omitted for

brevity.

Figure 7 shows how the semi-width a0, the contact angles β10 and β20, the maximum

height hm, and the location of the maximum height ym, vary with τ . In particular, this

figure shows that for all three problems β20, hm and ym increase monotonically while a0 (< 1)

decreases monotonically (with, of course, β10 = βR) as τ is increased from τdepin. Figure 7

also shows that an equilibrium solution with a prescribed receding contact angle β10 = βR

is possible for all values of τ > τdepin (i.e. there is no maximum value of τ corresponding

to τdepinmax in Subsection VI A). In particular, this means that, unlike in the cases of a

rivulet/ridge with two pinned contact lines and of a rivulet/ridge that de-pins only at the

advancing contact line, a rivulet/ridge that de-pins only at the receding contact line can

exist for an arbitrarily large transverse shear stress.

In the limit of large transverse shear stress, τ → ∞, the numerical solutions shown in

Figure 7 suggest that the rivulet/ridge becomes infinitely narrow like a0 = O(τ−
n

3n+2 ) → 0+
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Gravity-driven Rivulet Shear-driven Rivulet Ridge

τdepin 0.2635 0.2674 0.2756

β20 1.3532 1.3617 1.3797

hm 0.5076 0.5104 0.5163

ym 0.1457 0.1462 0.1472

TABLE IV: Values of τdepin and the corresponding values of β20, hm and ym when τ = τdepin for each of

the three problems in the case βR = 0.5.

and infinitely thick like hm = O(τ
1

3n+2 ) → ∞, and so we seek an asymptotic solution in the

form

h0 = τ
1

3n+2 h̄0, y = τ−
n

3n+2 ȳ, z = τ
1

3n+2 z̄,

a0 = τ−
n

3n+2 ā0, β20 = τ
n+1

3n+2 β̄20, hm = τ
1

3n+2 h̄m, ym = τ−
n

3n+2 ȳm, (46)

where n has the same meaning as in Section V A. At leading order in the limit τ → ∞ (20)

and (21) reduce to

h̄0h̄
′′′

0 +
3

2
= 0 (47)

subject to

h̄0(±ā0) = 0, h̄′

0(−ā0) = 0, h̄′

0(+ā0) = −β̄20, (48)

and the prescribed flux/area condition, which was solved numerically using the same ap-

proach as that employed to solve (20) subject to (21) and the prescribed flux/area condition,

but using the appropriate local behaviour near the left-hand contact line, namely

h0 = 2
√

τ(a0 + y)
3

2 + O(a0 + y)
5+

√

13

4 (49)

as y → −a+
0 in place of (22), to yield the solutions for the scaled free surface profile z̄ = h̄0(ȳ)

and the values of ā0, β̄20, h̄m and ȳm given in Table V. Figure 8 shows the scaled free surface

profile z̄ = h̄0(ȳ) of a gravity-driven rivulet. The corresponding results for a shear-driven

rivulet and for a ridge are qualitatively similar and hence are omitted for brevity. Figure

7(a) includes the leading order asymptotic behavour of a0 in the limit τ → ∞ given by

a0 ∼ τ−
n

3n+2 ā0, and shows that the asymptotic results are in good agreement with the exact
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FIG. 8: Scaled free surface profile z̄ = h̄0(ȳ) of a gravity-driven rivulet obtained by solving (47) subject to

(48) and the prescribed flux condition and relevant to a rivulet that de-pins only at its receding contact line

in the limit of large transverse shear stress τ → ∞. The corresponding results for a shear-driven rivulet and

for a ridge are qualitatively similar.

Gravity-driven Rivulet Shear-driven Rivulet Ridge

ā0 0.7594 0.7815 0.8294

β̄20 2.1346 2.1654 2.2307

h̄m 0.5644 0.5891 0.6441

ȳm 0.1490 0.1533 0.1627

TABLE V: Values of ā0, β̄20, h̄m and ȳm obtained by solving (47) subject to (48) and the prescribed

flux/area condition for each of the three problems and relevant to a rivulet/ridge that de-pins only at its

receding contact line in the limit of large shear stress τ → ∞.

ones even for relatively small values of τ . Of course, in practice, the present solution will

eventually fail at a large but finite value of τ because either β20 becomes so large that the

advancing contact line de-pins or a0 becomes so small and/or hm becomes so large that the

original assumption that the rivulet/ridge is thin breaks down.

C. De-pinning at Both Contact Lines

Except in the cases βR = 0 and βA = ∞ considered in Subsections VI A and VI B,

respectively, in general as τ is increased from zero depinning will eventually occur at both

contact lines. Beyond this critical yield value of τ , denoted by τyield, no equilibrium solution

exists and the rivulet/ridge will evolve unsteadily. From (26), τyield and the corresponding

critical yield value of a, denoted by ayield, are related by

β2
A − β2

R = 6ayieldτyield, (50)

which coincides with the thin-film limit of the corresponding result given by Dimitrakopoulos

and Higdon6 for a ridge (their Eq. (A2)). In the special case of small contact-angle hysteresis
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Gravity-driven Rivulet Shear-driven Rivulet Ridge

τyield 0.2340 0.2338 0.2342

ayield 1.0259 1.0264 1.0250

hm 0.5029 0.5032 0.5025

ym 0.1460 0.1461 0.1458

TABLE VI: Values of τyield and the corresponding values of ayield, hm and ym when τ = τyield for each of

the three problems in the case βR = 0.5 and βA = 1.3.

in which βA ≃ βR ≃ 1, ∆β = βA − βR ≪ 1 and ayield ≃ a0 equation (50) gives

τyield ≃ ∆β

3a0

≪ 1. (51)

In particular, for a ridge (51) reduces to the corresponding result obtained by Dimitrakopou-

los and Higdon6 in this special case (their Eq. (A4)). However, in general, the contact-angle

hysteresis will not be small (i.e. βA and βR will not be close to unity and ayield will not

be close to a0) and the values of τyield and ayield have to be determined from the numerical

results already obtained in Subsections VI A and VI B by identifying the value of τ (or,

equivalently, the value of a) at which β10 = βR in Subsection VI A or β20 = βA in Subsection

VI B, as appropriate. Table VI gives the values of τyield and the corresponding values of

ayield, hm and ym when τ = τyield for each of the three problems in the case βR = 0.5 and

βA = 1.3.

VII. CONCLUSIONS

In the present work we used the lubrication approximation to analyse three closely related

problems involving a thin rivulet or ridge of fluid subject to a prescribed uniform transverse

shear stress τ at its free surface due to an external airflow, namely a rivulet draining under

gravity down a vertical substrate, a rivulet driven by a longitudinal shear stress at its free

surface, and a ridge on a horizontal substrate, and found qualitatively similar behaviour for

all three problems.

In Section IV we described the general properties of equilibrium rivulet/ridge solutions

with parallel contact lines a1 = a10 and a2 = a20 and constant contact angles β1 = β10
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and β2 = β20. In particular, we showed that the free surface profile of the equilibrium

rivulet/ridge always has a single maximum and that the transverse flow within it always has

a single internal stagnation point.

In Sections V and VI we described the quasi-equilibrium development of solutions with

prescribed flux/area as τ is varied. In Section V we showed that the free surface profile

of a rivulet/ridge with pinned contact lines is skewed to the right as τ is increased from

zero, and that there is a maximum value of τ = τmax (corresponding to β10 = 0) beyond

which no solution with prescribed semi-width is possible. In practice, one or both of the

contact lines will de-pin before the maximum value τ = τmax is reached, and so in Section

VI we considered a rivulet/ridge that de-pins at one or both contact lines. In particular,

we determined the critical value of τ = τdepin (< τmax) at which de-pinning first occurs. For

τ > τdepin the free surface profile of the rivulet/ridge is further skewed to the right, but

otherwise the behaviour is qualitatively different for rivulets/ridges that first depin at the

advancing or at the receding contact line. In the case of de-pinning only at the advancing

contact line the rivulet/ridge is flattened and widened as τ is increased from τdepin, and

there is a second maximum value τ = τdepinmax (< τmax) (again corresponding to β10 = 0)

beyond which no solution with a prescribed advancing contact angle β20 = βA is possible.

In contrast, in the case of de-pinning only at the receding contact line the rivulet/ridge

is thickened and narrowed as τ is increased from τdepin, and a solution with a prescribed

receding contact angle β10 = βR is possible for all values of τ > τdepin. In general, in the

case of de-pinning at both contact lines there is a critical yield value of the shear stress

τ = τyield beyond which no equilibrium solution is possible and the rivulet/ridge will evolve

unsteadily.

In Appendix A we showed that an equilibrium rivulet/ridge with prescribed flux/area is

quasi-statically stable to two-dimensional perturbations.

Although not considered in the present work, the unsteady evolution of the rivulet/ridge

is also of considerable interest. Indeed, an example of precisely this situation has already

been analysed by Smith23 who studied the thermocapillary-driven motion of a thin two-

dimensional droplet on a substrate with a prescribed uniform temperature gradient. In the

special case of a droplet with zero heat loss at its free surface and no slip at the substrate,
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Smith’s23 problem is mathematically equivalent to the unsteady version of the present ridge

problem. Smith investigated the particular case βA = 1 and βR = 0.8 and found that as

the non-dimensional temperature gradient (equivalent to the present τ) increases from zero

the droplet immediately de-pins at the advancing contact line (because βA = 1) followed

by de-pinning at the retreating contact line and eventually by non-existence of equilibrium

solutions. This behaviour is both consistent with the present results and in accord with our

physical expectations and, based on the results of the present work, we would expect quali-

tatively similar behaviour for both the gravity-driven and the shear-driven rivulet problems.
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Appendix A: Quasi-Static Stability of an Equilibrium Ridge/Rivulet

In this Appendix we show that an equilibrium ridge/rivulet with prescribed flux/area is

quasi-statically stable to two-dimensional perturbations.

At leading order in the limit of small capillary number, C → 0, equation (9) becomes

simply ∇ · (ū, v̄) = 0 so that the rivulet/ridge is quasi-static and evolves according to the

general Tanner Laws (2).

Following the analysis described in Sections II – IV the free surface profile z = h(y) of a
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two-dimensional quasi-static rivulet/ridge satisfies

hh′′′ +
3τ

2
= 0 (A1)

subject to the contact-line conditions

h(a1) = h(a2) = 0 (A2)

and the prescribed flux/area condition

1

n

∫ a2

a1

hn dy = constant, (A3)

in which the prescribed values of the flux/area are given by (33) and n has the same meaning

as in Section V A. The contact angles β1 = β1(t) and β2 = β2(t) are given by β1 = h′(a1)

and β2 = −h′(a2), and from the general Tanner Laws (2) the positions of the contact lines

at a1 = a1(t) and a2 = a2(t) evolve according to

a1t = −F1(β1), a2t = F2(β2). (A4)

The semi-width of the rivulet/ridge, denoted by a = a(t), is given by a = (a2 − a1)/2, and,

since the location of the origin is arbitrary, we note that the two-dimensional quasi-static

solution depends on a1 and a2 only in the combination a.

We can investigate the quasi-static (and, in general, nonlinear) stability of any of the

equilibrium rivulet/ridge solutions h = h0 described previously with semi-width a = a0 and

contact angles β1 = β10 and β2 = β20 by seeking a perturbed solution in the form h = h0+h1

with perturbed positions of the contact lines a1 = −a0 + a11 and a2 = a0 + a21, and hence

perturbed semi-width a = a0 + â1, where â1 = (a21 − a11)/2, and perturbed contact angles

β1 = β10 + β11 and β2 = β20 + β21. At leading order in the perturbation quantities, the

Tanner Laws (A4) reduce to

a11t = −M

m!
βm

11, a21t =
N

n!
βn

21, (A5)

where M and N , defined by

M =
dmF1

dβm
1

∣

∣

∣

∣

∣

β1=β10

> 0, m = 1, 3, 5, . . . , (A6)

N =
dnF2

dβn
2

∣

∣

∣

∣

∣

β2=β20

> 0, n = 1, 3, 5, . . . , (A7)
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are the first non-zero derivatives of F1 and F2 (of orders m and n, respectively) at β1 = β10

and β2 = β20, respectively. The fact that the solution depends on a1 and a2 only in the

combination a = (a2 − a1)/2 means that

β11 =

[

a11

∂β1

∂a

∂a

∂a1

+ a21

∂β1

∂a

∂a

∂a2

]

a1=−a0
a2=a0

=
(a21 − a11)

2

∂β1

∂a

∣

∣

∣

∣

∣

a=a0

= â1

∂β1

∂a

∣

∣

∣

∣

∣

a=a0

, (A8)

with a similar expression for β21, and hence (A5) can be expressed as

a11t = −M

m!
(α1 â1)

m, a21t =
N

n!
(α2 â1)

n, (A9)

and therefore

â1t =
1

2

[

M

m!
(α1 â1)

m +
N

n!
(α2 â1)

n

]

, (A10)

where

α1 =
∂β1

∂a

∣

∣

∣

∣

∣

a=a0

, α2 =
∂β2

∂a

∣

∣

∣

∣

∣

a=a0

. (A11)

In practice, it is likely that m = n and M = N , and in this case we can solve (A10) and

hence (A9) to yield

a11(t) = a11(0) − â1(0)Mαm
1

σ
×



























eσt − 1 if m = 1,

(

(1 − m)σt

m! â1(0)1−m
+ 1

)
1

1−m

− 1 if m = 3, 5, 7, . . . ,

(A12)

with a similar solution for a21(t), where

σ =
M

2
(αm

1 + αm
2 ) (A13)

and â1(0) = [a21(0) − a11(0)]/2 is the initial perturbation to the semi-width of the

rivulet/ridge. Hence perturbations grow exponentially (if m = n = 1) or algebraically

(if m = n = 3, 5, 7, . . . ) when σ > 0 and decay when σ < 0, and so we deduce that an

equilibrium rivulet/ridge is stable when σ < 0 and unstable when σ > 0. Thus in order to

determine the quasi-static stability of the rivulet/ridge we need to calculate the values of

α1 and α2 defined by (A11). Solving (A1) subject to (A2) and (A3) numerically using the

same approach as that employed to solve (20) subject to (21) and the prescribed flux/area

condition reveals that α1 < 0 and α2 < 0 for all values of τ , and hence we deduce that
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an equilibrium rivulet/ridge is unconditionally quasi-statically stable to two-dimensional

perturbations.

Sullivan24 also showed that an equilibrium rivulet/ridge with pinned contact lines is

linearly stable to three-dimensional perturbations.
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