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We present an exhaustive account of phases and phase transitions that can be stabilized in the recently
introduced generalized Lebwohl-Lasher model with quadrupolar and octupolar microscopic interactions
[L. Longa, G. Pająk, and T. Wydro, Phys. Rev. E 79, 040701(R) (2009)]. A complete mean-field analysis
of the model, along with Monte Carlo simulations allows us to identify four distinct classes of the phase diagrams
with a number of multicritical points where, in addition to the standard uniaxial and biaxial nematic phases, the
other nematic like phases are stabilized. These involve, among the others, tetrahedratic (T ), nematic tetrahedratic
(NT ), and chiral nematic tetrahedratic (N∗

T ) phases of global Td , D2d , and D2 symmetry, respectively. Molecular
order parameters and correlation functions in these phases are determined. We conclude with generalizations
of the model that give a simple molecular interpretation of macroscopic regions with opposite optical activity
(ambidextrous chirality), observed, e.g., in bent-core systems. An estimate of the helical pitch in the N∗

T phase is
also given.
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I. INTRODUCTION

Fascinating systems of bent-core (banana-shaped)
molecules exhibit a variety of structures, unknown to con-
ventional mesogenic materials [1–4]. Not only do they give
rise to a whole family of smectic structures, known as B
phases [4], but they also seem to stabilize a nematic phase(s)
with a complex supramolecular structure [5,6] including a
much sought-after biaxial nematic phase [7–16]. Importantly,
a classical way of looking at the liquid crystalline chirality
must be revised, as well. While we usually regard chirality
and chiral structures of liquid crystals as resulting from the
presence of optically active (chiral) molecules (see, e.g.,
Refs. [17–19]), intrinsically achiral bent-core systems can
exhibit macroscopic regions with opposite optical activity,
pointing to the occurrence of a spontaneous chiral order.
Smectic layers, for example, can become chiral in these
systems if the long molecular axes are tilted with respect to
the layer normal. Then the smectic layers are spontaneously
polarized, normal to the tilt plane, and the three nonequivalent
vectors—the polar axis, the tilt direction, and the layer
normal—define a right-handed coordinate system and hence
introduce the layer chirality, as in the B2 bent-core phase [1].
The layer sense of chirality changes when either polarization
direction or tilt direction is reversed. Spontaneous formation of
macroscopic chiral domains of opposite handedness in various
phases, including isotropic and nematic phases, is also typical
of these systems (see, e.g., Ref. [3]).

The observation of this spontaneous chirality leaned toward
the hypothesis that the bent-core molecules can acquire tem-
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perature weighted conformational chirality of their terminal
groups [1,4,20] combined with a strong, short-range molecular
ordering of steric and electric dipoles [6,7]. An alternative
would be a microphase segregation due to different philicity
of various molecular segments in combination with molecular
packing as demonstrated for totally rigid, achiral bent-core
molecules [21].

Lubensky and Radzihovsky [22] argued that irrespective
of the actual microscopic scenario the spontaneously formed
chiral structures in bent-core systems can be understood on a
macroscopic, phenomenological level by assuming a coupling
between octupolar (tetrahedratic) and quadrupolar (biaxial)
tensor order parameters. For a complete description of orien-
tational order, a vector order parameter, accounting for a steric
or electric, long-range dipolar order, should also be included.
Mutual couplings between these three order parameters have
been shown to generate a large number of new phases, ranging
from the nematic liquids and the tetrahedratic liquid to novel
biaxial, polar, and chiral phases. Recent indirect observation of
a possible tetrahedratic phase and nematic tetrahedratic phases
in a bent-core liquid crystal [23] is an additional support for this
scenario. Interestingly, tetrahedratic mesophases along with
ambidextrous chiral domains and helical superstructures have
also been found in ferrocenomesogens [24].

Although there has been relatively few molecular level
studies on this fascinating class of materials the existing
work seems consistent with the phenomenological analysis
[22,25,26]. In particular, Bisi et al. [27] showed that practically
any ensemble of rigid C2-symmetric molecules generates a
series of competing quadrupolar and octupolar terms to the
Onsager’s excluded volume, which is prerequisite for having
biaxial and tetrahedratic ordering in the mean-field theory.
Evaluation of point dispersion interactions [28] between two
bent-core molecules gives mathematically similar terms [29].

011704-11539-3755/2012/86(1)/011704(13) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.79.040701
http://dx.doi.org/10.1103/PhysRevE.86.011704
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In our recent paper [29] (hereafter referred to as LPW)
we introduced a generalized Lebwohl-Lasher model to study
orientational ordering in bent-core systems at the microscopic
level. The model approximates point dispersion forces between
the molecules (or molecular associates) by assuming dominant
roles for quadrupolar (uniaxial and biaxial) and octupolar
(tetrahedratic) contributions. Results of molecular-field cal-
culations and Monte Carlo computer simulations were carried
out to show the simplest scenario possible, i.e., the formation
of absolutely stable tetrahedratic, tetrahedratic nematic, and
chiral tetrahedratic nematic liquids of global Td , D2d , and D2

symmetry, respectively, in addition to the standard uniaxial and
biaxial nematic phases. To simplify analysis we disregarded
polar interactions between the molecules.

A purpose of this paper is to offer an in-depth analysis of the
LPW model. Generalizations of the model, accounting for the
observed ambidextrous chirality and helical order, along with
an estimate of the pitch in the N∗

T phase, are also given. The
organization of the paper is as follows. In Sec. II, we present
a molecular model that comprises lowest-order quadrupolar
and octupolar interactions. In Sec. III we then identify
molecular order parameters, characterize all absolutely stable
orientationally ordered phases, and collect distinct phase
diagrams of this model using the mean-field approximation. To
extend the mean-field analysis the properties of the model are
also determined from Monte Carlo simulations in Sec. IV. In
Sec. V we generalize the model by including higher-order
couplings between quadrupolar and octupolar tensors and
the intermolecular direction. We identify a family of terms
responsible for a spatial modulation of chiral structures and
give a simple estimate for the helical pitch. We conclude with
a short summary in Sec. V.

II. MODEL

In our previous paper [29] we introduced a generalized
Lebwohl-Lasher dispersion interaction [30–33] that involved
the simplest type of coupling between molecular quadrupolar
and octupolar degrees of freedom. In the model liquid-
crystalline molecules (or molecular complexes) are assumed
to interact with the O(3)-invariant pair potential of the form

V (i,j ) = −ε(rij )
[
Q(�i) · Q(�j ) + τT3

2(�i) · T3
2(�j )

]
, (1)

where rij = |rij | is the distance between these molecules. The
first term represents interactions between two second-rank
quadrupolar tensors,

Q = T2
0 +

√
2λT2

2, (2)

defined with respect to twofold axes of the molecular
quadrupole moment. The second term accounts for interactions
between molecular octupolar, third-rank tensors (T3

2), defined
with respect to twofold axes of the molecular octupole
moment. The twofold axes of both tensors are taken to coin-
cide. The TL

m tensors denote symmetry-adapted, real-valued
irreducible tensors of angular momentum L in Cartesian
form [34,35]. Due to the assumed mutual orientation of the
twofold axes only three tensors TL

m, with L = 2 and 3, are

relevant:

T2
0,bk3

(�k) ≡ T2
0(�k) =

√
3

2

(
bk3 ⊗ bk3 − 1

3
1
)

,

T2
2,bk3

(�k) ≡ T2
2(�k) = 1√

2
(bk1 ⊗ bk1 − bk2 ⊗ bk2), (3)

T3
2(�k) = 1√

6

∑
(x,y,z)∈π(bk1,bk2,bk3)

x ⊗ y ⊗ z,

where �k is the orthonormal tripod of vectors {bk1,bk2,bk3}
attached to the kth molecule (molecular complex), hence
defining its orientational degrees of freedom.

The additional index z in T2
m,z denotes which vectors of

the orthonormal tripod {x,y,z} are used to construct T2
m. This

extended notation will be useful in the analysis of correlation
functions. Summation in T3

2 runs over six permutations of bk1,
bk2, and bk3. The coefficients are chosen such that the tensors of
the same rank fulfill the orthogonality condition with respect
to the scalar product “·”, defined as a full contraction over
Cartesian indices

TL
m · TL′

m′ = (
TL

m

)
αβ...

(
TL′

m′
)
αβ...

= δmm′δLL′ . (4)

The first two tensors in Eq. (3) are used to account for
nematic structures. More specifically, the tensors − 1

2 (T2
0 +√

3T2
2), − 1

2 (T2
0 − √

3T2
2), and T2

0 are invariant under rotations
about bk1, bk2, and bk3, respectively. Hence, they are D∞h

symmetric and responsible for the formation of the uniaxial
nematiclike order. An arbitrary linear combination of T2

0 and
T2

2 with the exclusion of the above cases gives a biaxial D2h-
symmetric tensor.

The last tensor, denoted T3
2, is the first one in the hierarchy

of tensors invariant with respect to tetrahedral point group
symmetry Td . The corresponding interaction term, propor-
tional to τ , can be regarded as a higher-order contribution to
interaction between, e.g., two ferrocenomesogens, bent-core
molecules, or complexes (Fig. 1 in LPW), described in terms
of tetrahedratic (nonlinear) point polarizabilities [28].

Special cases of the model (1), where either a quadrupolar
type or an octupolar type of the interaction was retained, have
already been studied. For τ = λ = 0 the model reduces to the
well-known Maier-Saupe or Lebwohl-Lasher [30] potential,
which accounts for isotropic and uniaxial nematic phases
connected by a first-order phase transition. The case with
λ 	= {0,

√
3/2} reduces to the model proposed by Luckhurst

et al. [31,32] and extensively studied by Biscarini et al. [33].
The model predicts a phase diagram with a prolate uniaxial
NU+ phase, an oblate uniaxial NU− phase, a biaxial NB

phase, and an isotropic I phase, where uniaxial nematic and
biaxial nematic phases are connected by a second-order phase
transition. A self-dual point, where λ = 1/

√
6 [11,33] and

where molecules are neither prolate nor oblate, separates a
phase in which the biaxial molecules are of the distorted prolate
form (λ < 1/

√
6) from a phase in which the molecules are

of the distorted oblate form (λ > 1/
√

6). Further literature
on biaxial order for this particular model can be found in
Refs. [36,37].

When only the tetrahedratic coupling, proportional to ετ

is retained in Eq. (1), the model predicts transition from
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FIG. 1. (Color online) (a) Mean-field phase diagram in (λ, t)
plane for τ = 1.7. A region of stable NB , T , and NU+ phases, marked
with a rectangle, is zoomed in panel (b). Continuous (dashed) lines
represent first-order (second-order) phase transitions.

the I phase to the tetrahedratic (T ) phase of Td symmetry,
involving an octupolar order parameter. At the microscopic
level it was studied by Fel [38,39], by Romano [40], and
in LPW. Phenomenological, macroscopic consequences of a
tetrahedratic order were discussed in detail by Cladis, Brand,
and Pleiner [41–43]. Symmetry classification of orientational
structures that combine tensor order parameters of different
ranks has been carried out by and Lubensky and Radzihovsky
[22] and by Mettout [44].

The combination of biaxial and tetrahedratic interactions,
Eq. (1), opens up new possibilities, where the most notable
one, as shown in LPW, is the appearance of the chiral nematic
tetrahedratic (N∗

T ) phase of D2 symmetry, in addition to the
nematic tetrahedratic phase (NT ) of D2d symmetry. A purpose
of this paper is to fully explore equilibrium properties of
the LPW model. Although we are primarily interested in
structures formed by orientational degrees of freedom in
the limit when any chirality-induced spatial modulation of
the orientational structures can be regarded as a secondary
characteristic, we show in Sec. V that in a more complete
description the homochiral N∗

T phase will permit a formation
of long-range twist. We also demonstrate that nonchiral
structures, including the isotropic liquid, will develop chiral
states with ambidextrous chirality.

As in LPW we assume the molecules occupy the sites of a
three-dimensional simple cubic lattice. This last assumption,
although irrelevant for the mean-field (MF) calculations
presented in Sec. III, is kept here mainly for consistency with
Monte Carlo simulations, which are carried out to test the MF
predictions. The strength of the interaction is given by ε(rij ),

taken to be a positive constant ε when particles i and j are
nearest neighbors and zero otherwise. The total interaction
potential is thus given by

H = 1

2

∑
〈i,j〉

V (i,j ), (5)

with summation running over nearest-neighbor molecular
pairs.

The interaction potential (5) with global O(3) symme-
try permits spontaneously ordered chiral structures. For a
proper thermodynamics description of such structures the kth
molecule degrees of freedom, �k , should involve a proper
rotation �′

k , expressed, e.g., in terms of standard Euler angles
(αk,βk,γk) [35] and an inversion operation of the molecule-
fixed system of frame, referred to as a parity degree of freedom
(see LPW). It is quantified in terms of the pk variable, where

pk = bk1 · (bk2 × bk3) = ±1. (6)

That is,

�k = {pk,�
′
k}. (7)

When an inversion is applied to a kth molecular tripod the
spherical tensors with odd L’s change sign, in agreement with
the general symmetry relation,

TL
m(�k) = TL

m(pk,�
′
k) = (pk)LTL

m(�′
k), (8)

where p2
k = 1 and p3

k = pk . Consequently, the inversions
force a sign change of the T3

2 tensor in Eq. (1), but leave
the Q tensor unaffected. Finally, since proper rotations and
inversions commute, the Ising-like parity degrees of freedom
and proper rotations can be treated independently.

As just discussed, associated with each lattice site
molecular degrees of freedom involve proper rotations
and inversions. Hence, for O(3)-symmetric models the N -
particle probability density distribution function PN depends
on {pi,�

′
i}, i = 1, . . . ,N . That is, PN (�1,�2, . . . ,�N ) ≡

PN (p1,�
′
1,p2,�

′
2, . . . ,pN,�′

N ), Eq. (7), with PN � 0 and
Tr

(1,...,N )
PN = 1, where

Tr
(1,...,N )

≡
N∏

k=1

⎛
⎝1

2

∑
pk=±1

∫
d�′

k

⎞
⎠ . (9)

Now, utilizing the Shannon’s formula for entropy the nonequi-
librium free energy for the system composed of N molecules
interacting through (1) is given by

βFneq = β Tr
(1,...,N )

[PNH ] + Tr
(1,...,N )

[PN ln PN ], (10)

where β = 1/(kBT ) is the inverse temperature. Minimizing
Eq. (10) with respect to PN gives ordinary statistical mechanics
in a canonical ensemble for a system with global O(3)
symmetry. The equilibrium free energy, Feq, is given, as usual,
by Feq = −β−1 ln Z, where Z = Tr

(1,...,N )
[exp(−βH )]. In the

next section we explore the equilibrium properties of the model
(5) in the mean-field approximation.
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III. MEAN-FIELD RESULTS

In mean-field theory we average the interaction energy to
obtain an effective single-particle potential due to all the other
particles. Mathematically this is equivalent to introducing the
one-particle ansatz for PN in Eq. (10):

PN (p1,�
′
1,p2,�

′
2, . . . ,pN,�′

N ) =
N∏

i=1

P1(pi,�
′
i) ≡

N∏
i=1

P (i),

(11)
which approximates Eq. (10) by the corresponding nonequi-
librium MF free energy

βF MF
neq = 1

2Ndβ Tr
(1,2)

[P (1) V (1,2)P (2)] + N Tr
(1)

[P (1) ln P (1)].

(12)

Please note that in MF theory of orientationally and trans-
lationally homogeneous liquid structures, where we average
the interaction energy to obtain an effective single-particle
potential due to all remaining particles, the presence of lattice
is reduced to a renormalization of the effective potential by
the number of nearest neighbors (d = 6) for the simple cubic
lattice considered here.

As usual, the equilibrium one-particle distribution function,
Peq, is obtained variationally by minimizing F MF

non with respect
to P (i), subject to the normalization condition Tr

(i)
[P (i)] = 1.

The necessary condition for Peq, δF MF
non /δP |P=Peq = λ, where

λ is the Lagrange multiplier, becomes reduced to a Fredholm-
type nonlinear integral equation,

Peq(1) = Z−1
MFe

−βdVeff (1), (13)

where

Veff(1) = Tr
(2)

[V (1,2)Peq(2)], (14)

ZMF = Tr
(1)

[e−βdVeff (1)], (15)

and where the equilibrium MF free energy becomes

βF MF
eq = − 1

2Nβd Tr
(1)

[Peq(1)Veff(1)] − N ln ZMF. (16)

With the assumed choice of mutual orientation of twofold
axes of the molecule’s Q and T tensors six stable structures
(Fig. 2 in LPW) are identified among stationary solutions
of Eq. (13): (a) the O(3)-symmetric, isotropic phase (I ); (b)
the D∞h-symmetric uniaxial prolate (NU+) and oblate (NU−)
nematic phases; (c) the D2h-symmetric biaxial nematic (NB)
phase; (d) the Td -symmetric tetrahedratic (T ) phase; (e) the
D2d -symmetric, distorted tetrahedratic nematic prolate (NT +)
and oblate (NT −) phases; and (f) the D2-symmetric, chiral
nematic tetrahedratic (N∗

T ) phase.
An important step in solving Eq. (13) is the identification of

the order parameters. This is achieved by expanding the one-
particle distribution function P (�) ≡ P (p,�′) in the series of
symmetry-adapted, real, linear combinations of the Wigner’s
rotation matrices DL

m′n′ [35] and real combinations of DL
mn’s

multiplied by the parity degree of freedom, p. We denote the
symmetry-adapted functions, orthogonal over O(3), as ps


L
mn,

NT
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T
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3
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t

FIG. 2. (Color online) Phase diagram for τ = 28
15 . Lines represent

mean-field results; points are from MC simulations for the three-
dimensional cubic lattice (16 × 16 × 16). Note that all possible
phases of the model meet at the Landau point (λ = 1/

√
6, t = 8/5),

which is surprisingly well reproduced in simulations. Continuous
(dashed) lines represent first-order (second-order) phase transitions.

where ps ∈ {1,p} and where

1

2

∑
p±1

∫
d�′ ps


(L)
mn(�) ps ′


(L′)
m′n′(�)

= 8π2

(2L + 1)
δLL′δmm′δnn′δss ′ . (17)

Please observe that, according to Eq. (7), 
’s depend on �. If
the corresponding order parameters are ps
L

mn, where

X = 1

2

∑
p=±1

∫
X(p,�′)P (p,�′)d�′ ≡ Tr[X P ], (18)

then the expansion for P (p,�′) can be cast in the following
general form:

P (p,�′) =
∑

L,m,m′,s

2L + 1

8π2
ps 


(L)
mm′ ps


(L)
mm′ (�). (19)

Assuming that the first label (m) in ps

L
mn refers to the

symmetry of the phase and the second (n) to the molecular
symmetry, the following symmetry-adapted functions ps


L
mn

(or, equivalently, the order parameters ps
L
mn) are nonvanish-

ing for each of the previously identified structures.
(a) For the I phase the only nonvanishing function is



(0)
00 = 1.
(b) For the NU phases,



(L)
mm′ =

(
1√
2

)2+δ0m+δ0m′ [
DL

mm′ + (−1)LDL
m−m′

+ (−1)LDL
−mm′ + DL

−m−m′
]
, (20)

where m = 0, 0 � m′ � L, ps = 1, and where L and m′ are
even. Terms with m′ = 0 and m′ 	= 0 correspond to molecular
uniaxial and molecular biaxial contributions, respectively. The
nonvanishing terms coming from the molecular tetrahedral part
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are



(L)
mm′ = N L

m′

(
1√
2

)1+δ0m [
DL

mm′ + (−1)LDL
m−m′

+ (−1)LDL
−mm′ + DL

−m−m′
] + N L

m′

(
1√
2

)1+δ0m

×
(

4
∑
m′′

DL
m′′m′

(
0,

π

2
,0

)[
DL

−mm′′ + (−1)LDL
mm′′

])
,

(21)
where

N L
m =

(
2 + 2δ0m + 16(−1)LDL

mm

(
0,

π

2
,0

)

+ 16
∑
m′

DL
mm′

(
0,

π

2
,0

)
DL

m′m

(
0,

π

2
,0

))− 1
2

, (22)

and where L is even and m = 0. Tetrahedral conditions must
also be fulfilled, which limit m′ and m′′ to even numbers with
0 � m′,m′′ � L. Additionally, the combinations L + m′

2 and
L + m′′

2 must be even for ps = 1 and odd for ps = p.
(c) For the NB phase, the nonvanishing order parameters

are given by Eq. (20) with m and m′ being even and
0 � m,m′ � L. In addition L must be even for ps = 1 and
odd for ps = p. The nonvanishing terms from molecular
tetrahedral contribution are of the same form as in (b) except
that now the conditions of L being even and m = 0 are
released.

(d) For the T phase the dominant terms come from the
molecular Td -symmetric (tetrahedral) part and are given by
[27]



(L)
mm′ = N L

mN L
m′

(
DL

mm′ + (−1)LDL
m−m′ + (−1)LDL

−mm′ + DL
−m−m′

) + N L
mN L

m′

(
4
∑
m′′

DL
m′′m′

(
0,

π

2
,0

)[
DL

−mm′′ + (−1)LDL
mm′′

])

+N L
mN L

m′

(
4
∑
m′′

DL
m′′m

(
0,

π

2
,0

)[
DL

−m′′m′ + (−1)LDL
−m′′−m′

])

+N L
mN L

m′

(
16(−1)L

∑
m′′,m′′′

DL
m′′m

(
0,

π

2
,0

)
DL

m′′′m′

(
0,

π

2
,0

)
DL

−m′′m′′′

)
. (23)

Here 0 � m,m′,m′′,m′′′ � L, where m, m′, m′′, and m′′′ are
even. In addition L + m

2 , L + m′
2 , L + m′′

2 , and L + m′′′
2 are

even for ps = 1 and odd for ps = p. Molecular uniaxial and
biaxial contributions give rise to the following terms:



(L)
mm′ = N L

m

(
1√
2

)1+δ0m′ [
DL

mm′ + (−1)LDL
m−m′

+ (−1)LDL
−mm′ + DL

−m−m′
] + N L

m

(
1√
2

)1+δ0m′

×
(

4
∑
m′′

DL
−m−m′′

(
0,

π

2
,0

)[
DL

−m′′m′

+ (−1)LDL
−m′′−m′

])
, (24)

where m and m′′ satisfy the tetrahedral limitations, given
right after Eq. (22), while m′ depends on the symmetry of
molecular terms. More specifically, (i) for the purely chiral,
SO(3)-symmetric contribution m′ = L = 0 and ps = 1; (ii)
for the uniaxial D∞h-symmetric molecular part L is even,
m′ = 0, and ps = 1; (iii) for the biaxial D2h-symmetric part
m′ is even and 0 � m′ � L; in addition L is even for ps = 1
and odd otherwise; (iv) for the D2d -symmetric molecular part
m′ is even and 0 � m′ � L; in addition L + m′

2 is even for
ps = 1 and odd for ps = p; (v) for the D2-symmetric chiral
molecules m′ is even and 0 � m′ � L.

(e) For the NT phases the nonvanishing contributions are
given by Eq. (20), where m and m′ are both even and where

0 � m,m′ � L. In addition L + m
2 is even for ps = 1 and

odd for ps = p. The nonvanishing terms from the molecular
tetrahedral contribution are the same as those in (b).

(f) For the N∗
T phase the nonvanishing terms in Eq. (20)

are ones with m and m′ such that 0 � m,m′ � L. The
nonvanishing molecular tetrahedral contributions are the same
as those in (c).
The numerical coefficients DL

mn

(
0, π

2 ,0
) ≡ DL

mn(�′ =
{0, π

2 ,0},p = 1), entering Eqs. (21)–(24), are calculated for
right-handed tripods.

Using the expansion (19) one can now express Eqs. (13)–
(16) in terms of the 
 functions. The form of the interaction
(1) causes that only terms with L � 3 in Eq. (19) are relevant.
A simple application of the orthogonality relation (17) along
with the expansion (19) allows one to calculate Veff , which can
be cast in the following general form

Veff/ε = −(

2

00 +
√

2λ
2
02

)(

2

00(�) +
√

2λ
2
20(�)

)
−(


2
20 +

√
2λ
2

22

)(

2

02(�) +
√

2λ
2
22(�)

)
−τ
3

22

3
22(�). (25)

Substitution of Veff back into Eq. (13) reduces that equation to
a simpler set of five coupled nonlinear equations. They read



(L)
mn = Z−1

MF Tr
(1)

[

(L)

mn(�1)e−βdVeff (1)
]
, (26)

where the relevant indices L, m, and n are those entering
Eq. (25). Helpful in deriving the equation above is a general
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NTNT
NT

T

I
NU

0 0.4 0.8 1.20

3

6

Λ

t

FIG. 3. (Color online) Mean-field phase diagram in the (λ, t)
plane for τ = 4. Note the existence of a critical end-point at λ ≈ 0.92.
Continuous (dashed) lines represent first-order (second-order) phase
transitions.

relation between 
’s and TL
m tensors, given by (see, e.g.,

Ref. [11])


L
mm′ (�ij ) = TL

m(�i) · TL
m′(�j ). (27)

The Eqs. (26) have a rich spectrum of solutions, one of

whose corresponds to the isotropic phase (
(L)
mn = 0, L > 0),

fulfilling Eq. (26) for all parameters of the model. The solution
corresponding to the NU phase, given the director is along the
z axis of the laboratory frame, is characterized by nonzero 
2

0m

(m = 0,2). In the NB phase only 
3
22 vanishes. The solution

corresponding to the NT phase is given by nonzero order

parameters of the NU phase along with nonzero 
3
22. Finally,

for the N∗
T phase all order parameters entering Eq. (25) are

nonzero. We found numerically that for the equilibrium state,
selected from the above solutions, the MF free energy (16)
approaches the absolute minimum.

In our previous paper two limiting classes of the phase
diagrams in the [λ,t = (βε)−1] plane were found for fixed
values of τ (LPW, Figs. 3 and 4) using MF calculations and

I

a

b

e

c

d

NT

NU

NT

0 0.5 1 1.5 20

0.5

1

t

m
nL

FIG. 4. (Color online) Temperature variation of the order parame-
ters entering parametrization of Veff , Eq. (25), for τ = 1 and λ = 0.5:
(a) primary uniaxial order parameter 
2

00, (b) secondary uniaxial

order parameter 
2
02, (c) primary biaxial order parameter 
2

22, (d)

secondary biaxial order parameter 
2
20, and (e) primary tetrahedratic

order parameter 
3
33.

Monte Carlo (MC) simulations. The first class, represented by
the diagram with τ = 1, showed no tetrahedratic phase. For
the second class of diagrams (τ = 9) the high-temperature
region was dominated by the tetrahedratic phase. Some
speculations about what can happen for intermediate values
of τ were also given. In particular, recalling the analogy to the
dispersion model [33], where I , NU+, NU−, and NB phases
simultaneously meet at a self-dual (Landau) point, we expected
the six phases, I , T , NT +, NT −, NU+, NU−, and NB , to meet
at a self-dual (Landau) point of the present model, which (if it
exists) should be found in the phase diagram for τ = 28/15 and
λ = 1/

√
6 [45]. An alternative scenario would be a first-order

I -N∗
T transition line about λ = 1/

√
6. We should add that

the critical value 28/15 of τ has been found by means of
the bifurcation analysis of the MF equations (26) about the
isotropic phase and confirmed by numerical studies of the MF
model.

The present analysis not only supports the existence of
a multicritical Landau point but completely characterizes
all structures and phase transitions predicted by the model.
Generally, most of the phase transitions found are second
order except when the uniaxial order parameter (L = 2, m = 0,
ps = 1) becomes nonzero. This means that only I -NT , T -NT ,
and I -NU phase transitions are first order. We also find that
the previously reported class of the diagrams for τ = 1 (LPW,
Fig. 3) occurs when τ � 1.54. The second reported class
(τ = 9, LPW, Fig. 4) requires τ � 6.16. Intermediate values
of τ give further two classes of the diagrams and one special
diagram with a multicritical Landau point.

The first new class of the diagrams is stable for 1.54 � τ <

28/15. It shows a direct T -NU+ first-order phase transition,
Fig. 1, in addition to the transitions previously reported in
LPW (LPW, Fig. 3). The special diagram is shown in Fig. 2,
where six phases coexist at a single multicritical Landau point
of τ = 28/15, λ = 1/

√
6, and t = 8/5. Here occurs a direct

second-order phase transition from the isotropic to chiral N∗
T

phase. For 28/15 < τ � 6.16, Fig. 3, the biaxial nematic
phase is not stable anymore giving rise to the second new
class of phase diagrams. Instead of the NB phase the NU−
phase is found here along with a bicritical point where two
second-order transition lines, I -T and NU−-NT −, meet two
first-order lines, I -NU− and T -NT −. The remaining features
of this class of the diagrams have already been accounted for
in LPW (LPW, Fig. 4). The critical values 1.54 and 6.16 of τ

are determined numerically from the MF equations, Eqs. (25),
(16), and (26), by comparing different transition temperatures.
A good starting guess is obtained from a bifurcation analysis
of the self-consistent equations (26).

Now we turn to a quantitative analysis of the order parame-
ters. There are three leading (primary) order parameters, 
2

00,


2
22, and 
3

22, describing various symmetries of stable phases.

Along with two secondary order parameters, 
2
02 and 
2

20, they
parametrize Veff , Eq. (25). Their temperature variation across
different phases is illustrated in Figs. 4–7.

Besides the order parameters entering Veff (Figs. 4–7)
there are a few secondary order parameters of L � 2, like
p and p
2

mn, that are of particular interest for the structures
identified. These order parameters, with obvious molecular
interpretation, become nonzero only when 
3

22 	= 0, hence

011704-6



TETRAHEDRATIC MESOPHASES, CHIRAL ORDER, AND . . . PHYSICAL REVIEW E 86, 011704 (2012)
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FIG. 5. (Color online) Temperature variation of the order param-
eters entering parametrization of Veff , Eq. (25), for τ = 1 and λ = 1√

6
(for definitions of the labels see the caption to Fig. 4). Note that the
secondary order parameters 
2

02 and 
2
20 coincide.

giving a better insight into the nature of NT and N∗
T phases.

To leading order in τ
3
22 they read

p ≡ 1

N

N∑
k=1

pk
∼=

√
2

210t4
τλ(−3 + 2λ2)
3

22

(

2

20 +
√

2λ
2
22

)3
,

(28)

p
2
00 ≡ 1

N

N∑
k=1

pk

2
00(�k) ∼=

√
2

14t2
τλ
3

22

(

2

20 +
√

2λ
2
22

)
,

(29)

p
2
02 ≡ 1

N

N∑
k=1

pk

2
02(�k) ∼= −1

14t2
τ
3

22

(

2

20 +
√

2λ
2
22

)
,

(30)

p
2
20 ≡ 1

N

N∑
k=1

pk

2
20(�k) ∼= −√

2

14t2
τλ
3

22

(

2

00 +
√

2λ
2
02

)
,

(31)

p
2
22 ≡ 1

N

N∑
k=1

pk

2
22(�k) ∼= 1

14t2
τ
3

22

(

2

00 +
√

2λ
2
02

)
.

(32)

NU

NT

I

NT
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d

e
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t

m
nL

FIG. 6. (Color online) Temperature variation of the order param-
eters entering parametrization of Veff , Eq. (25), for τ = 1 and λ = 0.3
(for definitions of the labels see the caption to Fig. 4). Here prolate
uniaxial phases are found.

NU

NT
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e

0 0.5 1 1.50
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1

t

m
nL

FIG. 7. (Color online) Temperature variation of the order parame-
ters entering parametrization of Veff , Eq. (25), for τ = 1 and λ = 0 (for
definitions of the labels see the caption to Fig. 4). This corresponds
to the case without biaxiality and, hence, only 
2

00 (a) and 
3
22 (e)

are nonzero. The transition temperature to the uniaxial nematic phase
has the same value as in the Maier-Saupe model.

The formulas (28)–(32) are derived by identifying P (p,�′)
in Eq. (18) with the mean-field distribution function,
Eqs. (13) and (25). Next, the resulting formulas are expanded

with respect to τ
3
22 about τ
3

22 = 0.
The most apparent conclusion, especially from Eq. (28),

is that the N∗
T phase is stabilized as a result of interplay

between octupolar (tetrahedratic) and standard quadrupolar
biaxial long-range orders. These, when combined together,
lead to a nonvanishing homochiral order as measured by p,

which is absent in the uniaxial limit (λ = 0 or λ =
√

3
2 ).

Interestingly, in the NT phase, homochiral domains are formed
that are weakly biaxial, as exemplified by the secondary order
parameters p
2

2m (m = 0,2). However, these domains are
equally populated yielding overall nonchiral structure (p = 0).
Moreover, the secondary biaxial order parameters, Eqs. (31)
and (32), are nonzero in the NT phase, where both uniaxial
and tetrahedratic orders coexist.

In the next section we compare the MF results with Monte
Carlo simulations.

IV. MONTE CARLO SIMULATIONS

So far, the calculations presented have all been obtained
using mean-field theory. Clearly, MF underestimates entropy,
which in turn exaggerates the tendency toward ordered phases.
In order to assess the validity of the MF theory and account
for correlations between molecular degrees of freedom, we
perform MC simulations for the model (1). We carry out
the simulations on a cubic lattice of relatively large size,
16 × 16 × 16, with periodic boundary conditions, using the
standard Metropolis algorithm. The lattice size is chosen such
as to limit the fluctuation effects in determining the physical
quantities of interest. For the simulations, the orientational
degrees of freedom of molecules are coded in a quaternion
representation. Each attempted MC move involves proper
rotation of a molecule’s orientation and parity inversion.
The size of the MC rotational step is adjusted to give
an acceptance ratio between 30% and 40% in the ordered
phases.
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(a)

(b)

FIG. 8. (Color online) Uniaxial and biaxial order parameters

2

00 and 
2
22 for (a) τ = 1 and λ = 0.5, (b) τ = 28

15 and λ =
0.5, and (c) τ = 28

15 and λ = 1√
6
. Respective phases and phase

transitions are indicated. The order parameters are calculated using
the diagonalization method, Eq. (37).

Typically, 50 000 to 200 000 lattice sweeps are used to
thermalize the system and 60 000 to 200 000 sweeps are used
for measurements. Close to a phase transition the temperature
is scanned with a step of δt down to δt = 0.001. To obtain
reliable results in this case, we perform thermalization of up to
106 MC sweeps followed by up to 106 MC cycles of production
run. Phase transitions are detected from the peaks of the
temperature dependence of specific heat and susceptibilities.
In addition, order parameters and pair-correlation functions
are determined for uniaxial, biaxial, tetrahedral, and parity
degrees of freedom. Detailed simulations are performed for
τ = 1, 28

15 and λ = 0.3, 1√
6
, 0.5. Some of representative data

are shown in Figs. 2 and 8–14.
The calculation of the order parameters is performed

by several different approaches. Some are determined from

(a)

(b)

FIG. 9. (Color online) Chirality order parameter p and tetrahe-
dratic order parameter 
3

22 for (a) τ = 1 and λ = 0.5, (b) τ = 28
15 and

λ = 0.5, and (c) τ = 28
15 and λ = 1√

6
. Respective phases and phase

transitions are indicated.

a

bc

d

0.5 1 1.50

0.5

1

t

G
m
nL

FIG. 10. (Color online) Order parameters from correlation func-
tions for τ = 1 and λ = 0.3, where lines represent MF results and
points are from MC simulations for the three-dimensional cubic
lattice (16 × 16 × 16). Curves show square roots of G̃2

00 (a), G̃2
22

(b), G̃2
02(=G̃2

20) (c), and G̃3
22 (d).
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(a)

(b)

FIG. 11. (Color online) Susceptibilities per molecule for the
uniaxial (χT 2

0
) and biaxial (χT 2

2
) tensors: (a) τ = 1 and λ = 0.5,

(b) τ = 28
15 and λ = 0.5, and (c) τ = 28

15 and λ = 1√
6
. Respective

phases and phase transitions are indicated.

the asymptotic behavior of the O(3)-invariant correlation
functions

G
(L)
mm′,xy(|i − j |) = T(L)

m,x(�i) · T(L)
m′,y(�j ) (33)

and

Gpp(|i − j |) = pipj

|i−j |→∞−−−−−→ pipj = p2, (34)

where x,y ∈(ak,bk,ck) and L � 3. In order to extract the order
parameters from Eq. (33) we note that the unit operator 1G ,
defined for a given symmetry group G, is given by

1G =
∑
l′m′s ′

T(L′)s ′
m′ ⊗ T(L′)s ′

m′ , (35)

where T(L′)s ′
m′ ≡ T(L′)s ′

m′,n is constructed using the directors’ tripod
{l,m,n} and where s ′ is the seniority index [34]. Now, with the
help of Eq. (35) we can rewrite Eq. (33) using 
L

mn functions.

(a)

(b)

FIG. 12. (Color online) Specific heat c and susceptibility χp of
the chirality order parameter χp for (a) τ = 1 and λ = 0.5, (b) τ = 28

15
and λ = 0.5, and for (c) τ = 28

15 and λ = 1√
6
. Respective phases and

phase transitions are indicated.

For L � 3, in which case the seniority index is irrelevant, we
obtain

G
(L)
mm′,xy(|i − j |) =

∑
m′′



(L)
m′′m,x(�i) 


(L)
m′′m′,y(�j )

(36)|i−j |→∞−−−−−→ G̃
(L)
mm′,xy =

∑
m′′



(L)
m′′m,x 


(L)
m′′m′,y,

where m′′ = 0,2 for L = 2 and m′′ = 2 for L = 3. Note that
for the tetrahedratic part of L = 3 we have only one pair-
correlation function. This reduction is a direct consequence of
the assumed form for the tetrahedratic interaction in Eq. (1).
For L = 2 there are 21 (dependent) correlations of which
the asymptotic form G̃

(L)
mm′,xy allows one to determine 12

(dependent) order parameters, 

(L)
m′′m,x. In what follows we

limit ourselves to x = y = bk3 and drop the indices x and y.
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FIG. 13. (Color online) Correlation functions T2
2(0) · T2

2(j ) (a),

T3
2(0) · T3

2(j ) (b), and p(0)p(j ) for τ = 1 and λ = 0.3. All tem-
peratures (right column) are above the chiral symmetry breaking
temperature. The isotropic phase is stable for t � 1.21; the NU+
phase is observed for 1.21 � t � 1.114, and the NT + phase is stable
for 1.114 � t � 1.1.

For L = 2 the expansion in Eq. (36) cannot be resolved
for the single-order parameters 
2

00 and 
2
22. In this case

we determine 
’s by diagonalizing numerically the averaged
molecular tensors T2

0 and T2
2 to obtain the directors. Then the

calculation of 
2
m′′m follows using the formula



(L)
m′′m = T(L)

m′′,n · T(L)
m . (37)

Examples of the temperature variation of the order parameters
for selected sets of model parameters are given in Figs. 8–10.
Shown are {
2

00, 
2
22} for the NU and NB phases (Fig. 8)

and {
3
22, p} for the NT and N∗

T phases (Fig. 9). A
comparison between the MF order parameters and the order
parameters determined from the asymptotic behavior of the
pair-correlation functions is also given in Fig. 10. Note that

j

(2
)

 2
0

(2
)

2
j

(a)

j
(3
)

2
0

(3
)

2
j

(b)

j

(c)

FIG. 14. (Color online) Correlation functions T2
2(0) · T2

2(j ) (a),

T3
2(0) · T3

2(j ) (b), and p(0)p(j ) for τ = 1 and λ = 1/
√

6. The
temperatures (right column) correspond to the isotropic phase (t �
1.27), the biaxial nematic phase (1.27 � t � 1.123), and the N∗

T

phase (1.123 � t).

for L = 3 and m′′ = 2, Eq. (36), we have G̃3
22 = (
3

22)2, so the
tetrahedratic order parameter calculated using the correlation
method and the diagonalization method should be the same,
which is supported by simulations. The order parameter p is
determined using both the correlation method and the direct
average over MC configurations.

The results from simulations are consistent with the MF
predictions. In particular, we observe the same sequence of
phase transitions with both methods and phase diagrams
are similar in shape. As expected, the curves obtained by
the MC simulations lie below those obtained from MF.
The relative differences between the corresponding transition
points depend on the value of the coupling constant λ and the
type of transition. For the two methods, the relative differences
between transition temperatures ranged from about 8% for
λ = 0 and the NU -I transition to about 20% for λ = 0.3 and
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the N∗
T -NT transition. The most visible difference between the

MF analysis and the MC simulation results occurs at the NU -I
transition below the duality point.

The susceptibility χT of a tensorial order parameter T(i),
defined locally on the lattice site i, is calculated as a temporal
fluctuation of its lattice mean TL = 1

L3

∑L3

i∈Lattice T(i), where
L here denotes the system’s size. It reads

χT = T 2
L − TL

2
, (38)

where TL = √
TL · TL. Susceptibilities found in simulations

include χT2
0
, χT2

2
, χT3

2
, and χp. Their temperature variations

along with that for the specific heat, for τ = 1, 28
15 and λ =

0.5, 1√
6
, are found in Figs. 11 and 12.

For selected τ and λ shown are the temperature variations
of {χT2

0
,χT2

2
} for the transitions involving uniaxial and biaxial

nematic phases (Fig. 11), χT3
2

(Fig. 9), and {c,χp} for the NT

and N∗
T phases (Fig. 12). An example of a full phase diagram

determined from simulations is given in Fig. 2.
Generally we observe a good agreement in determining

transition temperatures from the behavior of the order pa-
rameters, the susceptibilities, and the specific heat, although
the uniaxial (χT2

0
) and biaxial (χT2

2
) susceptibilities [see, e.g.,

Fig. 11(b)] exhibit, in some cases, considerable fluctuations.
Computationally most demanding is a localization of the
transition temperature to the N∗

T phase. This is due to the fact
that at low temperatures the thermalization time of the
parity degrees of freedom becomes large compared to the
thermalization time of purely orientational degrees of freedom.
This occurs because the discrete parity switch involves
comparatively large changes in local energies as contrasted
with purely rotational moves, thereby lowering the number of
accepted Metropolis moves. The effect is seen in the behavior
of the susceptibility χp (Fig. 12).

Computer simulations allow for studies of correlations
between molecular degrees of freedom. Three types
of correlations, T2

2(�i) · T2
2(�j ) ≡ T2

2(0) · T2
2(j − i),

T3
2(�i) · T3

2(�j ) ≡ T3
2(0) · T3

2(j − i), and pipj ≡
p(0)p(j − i), characteristic of biaxial, tetrahedratic, and
chiral orderings are shown in Figs. 13 and 14. Note that
local, temperature-dependent chiral correlations are observed
across all phases, including the isotropic one. Except for an
immediate vicinity of the phase transitions these correlations
decay to its asymptotic value for distances of the order of
three lattice spacings.

The second-order nature of some of the observed phase
transitions impact the decay of correlation functions. In
general, we observe a nonexponential decay of the correla-
tions close to the second-order phase transitions, which fit
well to mixed, four-parameter, power-exponential function
Ax−ν exp(−x/ξ ) + B with ν ≈ 1, as predicted by Gaussian
theory. The nonexponential decay of correlations is especially
pronounced for tetrahedral and biaxial correlations, for both
λ = 0.3 and λ = 1√

6
.

For τ = 1 and λ = 0.3, Fig. 13, the considered temperatures
extending from t = 1.100 to t = 1.21 are above the chiral
symmetry-breaking temperature. This is confirmed by the zero
value of the asymptotic chiral-chiral correlations, Fig. 13(c).

For τ = 1 and λ = 1√
6
, Fig. 13, we observe a week I -NB phase

transition followed by a strong NB-N∗
T phase transition.

Finally, neither MF calculations nor MC simulations sup-
port the existence of a line of first-order I -N∗

T phase transitions
in the present model. A direct I -N∗

T phase transition is found
only at an isolated Landau point.

V. TWISTED MOLECULAR CONFIGURATIONS AND
AMBIDEXTROUS CHIRALITY

The class of spatially homogeneous, orientational structures
identified so far can be made much richer by supplementing
quadrupolar and octupolar interactions, Eq. (1), with further
couplings between the molecular tensors T2

0, T2
2, and T3

2,
Eq. (3), or by assuming that the twofold axes of Q and T3

2
do not coincide. We will discuss these interesting cases in our
future publication.

In this section we are concerned with yet another important
group of interactions, where the T tensors, Eq. (3), are coupled
to the intermolecular unit vector r̂ij . Such couplings, as
we show, can superimpose spatially inhomogeneous (short-
or long-range) orientational order on the structures already
identified. In particular, the N∗

T phase becomes unstable against
spontaneous twist formation. More specifically, assume that
(r̂ij )γ = −(r̂ji)γ is the γ component of the intermolecular unit
vector rij /rij . The simplest examples of interactions, linear in
r̂ij , that can be added to Eq. (1) are

Vc(pi,�
′
i ,pj ,�

′
j )

= κ

ε
[bαi · (bβi × bγ i)Qαν(�i)Qβν(�j )

−bαj · (bβj × bγj )Qαν(�j )Qβν(�i)] (r̂ij )γ (39)

and

V T
c (pi,�

′
i ,pj ,�

′
j )

= κT

ε
[bαi · (bβi × bγ i)T

3
2,αμν(�i)T

3
2,βμν(�j )

−bαj · (bβj × bγj )T 3
2,αμν(�j )T 3

2,βμν(�i)] (r̂ij )γ . (40)

In the above expressions we have used an Einstein convention
for the repeated indices.

The third-rank molecular tensor bα · (bβ × bγ ), totally
antisymmetric in {α,β,γ }, that enters Eqs. (39) and (40) is
constructed out of the components of the T tensors (3) as

bα · (bβ × bγ ) = 2
√

2
∑

(x,y,z)∈c{α,β,γ }
T 2

0,xμT 2
2,yνT

3
2,μνz,

(41)
where summation runs over cyclic permutations of {α,β,γ }
(c{α,β,γ } = {(α,β,γ ), (γ,α,β), (β,γ,α)}).

The interactions (39) and (40), when added separately to V ,
Eq. (1), yield similar qualitative predictions about the system’s
behavior. We therefore limit ourselves to the discussion of the
role played by the Vc term, leaving more exhaustive analysis
to our forthcoming publication. The new pair interaction
potential, Vtotal, is thus given by adding V and Vc, Eqs. (1)
and (39), which gives

Vtotal(pi,�
′
i ,pj ,�

′
j ,r̂ij )

= V (pi,�
′
i ,pj ,�

′
j ) + Vc(pi,�

′
i ,pj ,�

′
j ,r̂ij ). (42)
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Clearly, Vtotal is symmetric with respect to the exchange of
particles and with respect to π rotations about any of twofold
axes of the Q (T3

2) tensor. The interaction (42) is also invariant
with respect to interchange of the molecule-fixed tripods and
their parities, and the subsequent replacement of {pi,pj } by
{−pi, − pj }. More specifically

Vtotal(pi,�
′
i ,pj ,�

′
j ,r̂ij ) = Vtotal(−pj ,�

′
j , − pi,�

′
i ,r̂ij ),

(43)
which, along with Vc ∼ (pi + pj ), allows one to limit κ to
κ � 0. The proportionality of Vc to (pi + pj ) and Eq. (43)
also imply that Vc is relevant given that pi = pj . For states of
opposite parity (pi = −pj ) the Vc term vanishes.

Now we show that for nonvanishing κ the homochiral
N∗

T structure becomes unstable against spontaneous twist
formation. Twisted configurations of opposite (ambidextrous)
chirality will be formed in nonchiral phases. To see this,
we find it useful to express Vtotal in terms of relative Euler
angles �′

ij = {αij ,βij ,γij } that define the rotation carrying the
molecule-fixed right-handed frame �′

i into the molecule-fixed
right-handed frame �′

j . We also use spherical coordinates
{θij ,φij }, taken with respect to the �′

i basis, to express r̂ij as
r̂ij = {sin(θij ) cos(φij ), sin(θij ) sin(φij ), cos(θij )}. This leads
to

Vtotal(i,j ) = −ε[fQQ(�′
ij ) + τpipjfT T (�′

ij )

− κ(pi + pj )fr (�′
ij ,θij ,φij )], (44)

where
fQQ(�′)

= 1
4 {1 + 3 cos(2β) + 2

√
6λ sin2(β)( cos(2α) + cos(2γ ))

+ 2λ2[cos(2α) cos(2γ )(3 + cos(2β))

− 4 sin(2α) cos(β) sin(2γ )]} (45)

fT T (�′) = cos(2α) cos(2β) cos(2γ )

− 1
8 sin(2α) sin(2γ )[5 cos(β) + 3 cos(3β)] (46)

fr (�′,θ,φ)

= 1
2 {λ sin(2α) cos(θ )[λ cos(2γ )(3 + cos(2β)) + √

6 sin2(β)]

+ λ sin(2γ )[sin(β) sin(θ )(2λ cos(α + φ) +
√

6 cos(α − φ))

+ 4λ cos(2α) cos(β) cos(θ )] + 1
2 sin(2β) sin(θ )[sin(α − φ)

× (
√

6λ cos(2γ ) − 3) − λ sin(α + φ)(
√

6 − 2λ cos(2γ ))]}.
(47)

A spatial ordering promoted by Vtotal can partly be found
by studying the ground state properties of Eq. (44). To keep
contact with spatially homogeneous but anisotropic phases
identified in the preceding sections we carry out energetic
considerations for ε > 0 and τ > 0.

If κ = 0, then

Min
{�′}

(V (i,j )) = −ε(1 + 2λ2 + pipj τ ) (48)

is satisfied by a configuration with pi = pj and with twofold
axes of Q(i) (T3

2(i)) Q(j ) (T3
2(j )) aligned parallel to each

other. This local arrangement can be extended globally over
the whole lattice to stabilize the N∗

T structure.
For κ 	= 0 and λ not too close to its upper uniaxial limit of√

3/2, the ground state configuration is achieved for bi1, bj1,

FIG. 15. (Color online) Molecular twist of quadrupoles and
octupoles as generated by the interaction potential (42). Parameters
taken are λ = 0.4 and τ = κ = 1.

and r̂ij being aligned parallel to each other. The perpendicular
axes {bj2,bj3} are rotated by β0ij about bi1 clockwise (pi +
pj = 2) or counterclockwise (pi + pj = −2) from {bi2,bi3},
where

tan(2β0ij ) = κ�(pi + pj )

� + 4τ
, (49)

� = 3 + 2λ(
√

6 + λ). (50)

An example of mutual orientation of a pair of molecular
quadrupoles and octupoles is shown in Fig. 15.

For small κ we can expand tan(2β0ij ) with respect to β0ij

and perform the thermodynamic average of both sides of the
obtained approximate relation. This leads to

β0 ≡ β0ij = κ�

� + 4τ
p, (51)

which is an approximate formula for the averaged molecular
twist of the nearest-neighbor tripods in the limit of high
orientational order. If we now combine Eq. (51) with the
leading mean-field estimate for p, Eq. (28), we note that
at the transition to homochiral N∗

T structure the molecular
configurations will develop a long-range twist of pitch β0/π ,
similar to that observed in cholesteric or blue phases. In the
nonchiral phases like I , N , T , and NT , where p = 0, both
populations of left- and right-handed twist configurations will
be equally represented leading to what is known, and observed
experimentally, as ambidextrous chirality. The effect should be
weak [see Eq. (28)] and the studies of the preceding sections
correspond to the limit when κ [and other similar couplings,
like, e.g., Eq. (40)] can be neglected.

VI. CONCLUSIONS

We have studied equilibrium properties of the recently
introduced LPW model with quadrupolar and octupolar pair
interactions. The most interesting feature of the model was
the appearance of absolutely stable homogeneously chiral
nematic tetrahedratic, ordinary nematic tetrahedratic, and
tetrahedratic phases. Six qualitatively different classes of the
phase diagrams were identified, one of which displayed the
existence of a Landau multicritical point where six different
phases met. MF results were consistent with MC simulations.
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The inclusion of higher-order pair interactions that involve
coupling between the quadrupolar and octupolar tensors and
the intermolecular direction induces twist in the NT ∗ phase
and yields a simple explanation of recently observed chiral
domains of opposite chirality in various phases formed by
achiral banana-shaped molecules and ferrocenomesogens.
Proposed molecular modeling is generic in the sense that only
symmetry allowed terms are retained in the interaction poten-
tial. Hence our predictions should hold for any system where
tetrahedratic order and quadrupolar order may simultaneously
coexist. Orientational structures identified can also coexist
with a long-range positional order, characteristic of smectic
or crystalline phases.
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