Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Nickel plating of FBG strain sensors for nuclear applications

Perry, M. and Niewczas, P. and Johnston, Michael and Mackersie, J. (2011) Nickel plating of FBG strain sensors for nuclear applications. In: 21st International Conference on Optical Fiber Sensors. Proceedings of SPIE . SPIE--The International Society for Optical Engineering., Bellingham. ISBN 9780819482464

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

We present a method for plating FBG strain sensors with a strongly-bonded, hermetic nickel layer, without exposure of the fiber to corrosive environments. A 1 mu m thick, highly adhesive chrome layer is deposited onto bare fibers via evaporation. Addition of an inert and electrically conductive gold layer then allows the fiber to be electroplated with a 50-100 mu m nickel layer. Finite element models have confirmed that nickel plated FBG sensors can be brazed into steel structures and used to monitor local strain and temperature. Embedding gratings that are temperature and radiation resistant will be particularly applicable to the structural health monitoring of steel prestressing tendons used in the concrete containments of nuclear power plants and other safety-significant structures.