Picture of sea vessel plough through rough maritime conditions

Innovations in marine technology, pioneered through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Naval Architecture, Ocean & Marine Engineering based within the Faculty of Engineering.

Research here explores the potential of marine renewables, such as offshore wind, current and wave energy devices to promote the delivery of diverse energy sources. Expertise in offshore hydrodynamics in offshore structures also informs innovations within the oil and gas industries. But as a world-leading centre of marine technology, the Department is recognised as the leading authority in all areas related to maritime safety, such as resilience engineering, collision avoidance and risk-based ship design. Techniques to support sustainability vessel life cycle management is a key research focus.

Explore the Open Access research of the Department of Naval Architecture, Ocean & Marine Engineering. Or explore all of Strathclyde's Open Access research...

Empirical mode decomposition-based monopulse processor for enhanced radar tracking in the presence of high-power interference

Elgamel, S. A. and Soraghan, J. (2011) Empirical mode decomposition-based monopulse processor for enhanced radar tracking in the presence of high-power interference. IET Radar Sonar and Navigation, 5 (7). pp. 769-779. ISSN 1751-8784

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Monopulse radars are used to track targets that appear in the look direction beam width. The distortion of the tracking information produced when high power interference signals (jamming) are introduced through the radar antenna can cause severe erroneous outcomes from the monopulse tracking processor. This leads to errors in the target tracking angles that may cause target mistracking. New monopulse radar structures that utilizes an empirical mode decomposition (EMD) based denoising processor are presented in this paper. EMD filtering is carried out for the complex radar chirp signal with subsequent detrending, thresholding, and denoising processes. These processes are used to decrease the noise level in the radar processed data to improve the signal to noise ratio. The performance enhancement using the monopulse radar tracking system with EMD based filtering is included using the standard deviation angle estimation error (STDAE) for different jamming scenarios and different target SNRs. STDAE shows that the new EMD based system works well in the case of main beam interference and side lobe interference for the conventional processor and, in the case of the spatial adaptive processor, is effective in the case of main lobe interference.