Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

A single-crystal Raman and infrared study of the nonlinear optical crystal MBANP

Bailey, R. T. and Cruickshank, F. R. and Dines, T. J. and Sherwood, N. and Tedford, A. C. (2011) A single-crystal Raman and infrared study of the nonlinear optical crystal MBANP. Journal of Raman Spectroscopy, 42 (5). pp. 1174-1184. ISSN 0377-0486

Full text not available in this repository.Request a copy from the Strathclyde author


Single-crystal Raman and polycrystalline thin-film infrared measurements have been obtained for the polar organic nonlinear optical material 2-(alpha-methylbenzylamino)-5-nitropyridine(MBANP). For comparison, thin-film polycrystalline infrared measurements were also made on 2-(alpha-methylbenzylamino)-3,5-dinitropyridine (MBADNP). The long wavelength electronic absorption was measured in several solvents and as a thin solid film. The Raman spectra are dominated by three intense bands attributed to vibrations of the ring, the NO(2) substituent, and the N-H bond. The most intense scattering and absorption arose from the alpha(bb) component of the polarisability tensor. This implies that the most significant contribution to the transition polarisability arises from the electronic transition near 383 nm, polarised along the b-axis of the crystal. The strongest bands in the infrared spectra are also associated with the same three bands, consistent with the predictions of the effective conjugation coordinate (ECC) theory, implying efficient electron-phonon coupling (or electronic delocalisation) in the conjugated system. DFT calculations of vibrational wavenumbers and eigenvectors were used to assign relevant vibrational features and to derive useful information about the molecular structure. This single-crystal material is also a strong candidate for an efficient laser Raman converter with a large wavenumber shift of 3404 cm(-1) and a high damage threshold.