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Abstract

Population systems are often subject to environmental noise. Motivated by Takeuchi et al. [36], we will

discuss in this paper the effect of telegraph noise on the well-known SIS epidemic model. We establish the

explicit solution of the stochastic SIS epidemic model, which is useful in performing computer simulations.

We also establish the conditions for extinction and persistence for the stochastic SIS epidemic model and

compare these with the corresponding conditions for the deterministic SIS epidemic model. We first prove

these results for a two-state Markov chain and then generalise them to a finite state space Markov chain.

Computer simulations based on the explicit solution and the Euler–Maruyama scheme are performed to

illustrate our theory. We include a more realistic example using appropriate parameter values for the spread

of Streptococcus pneumoniae in children.
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1 Introduction

Population systems are often subject to environmental noise and there are various types of environmental

noise, e.g. white or colour noise (see e.g. [11, 15, 25, 26, 28, 34, 36]). It is therefore critical to discover whether

the presence of such noise affects population systems significantly.

For example, consider a predator-prey Lotka-Volterra model







ẋ1(t) = x1(t)(a1 − b1x2(t)),

ẋ2(t) = x2(t)(−c1 + d1x1(t)),
(1.1)

where a1, b1, c1 and d1 are positive numbers. It is well known that the population develops periodically if

there is no influence of environmental noise (see e.g. [14, 35]). However, if the factor of environmental noise is

taken into account, the system will change significantly. Consider a simple colour noise, say telegraph noise.

Telegraph noise can be illustrated as a switching between two or more regimes of environment, which differ by

factors such as nutrition or rainfall (see e.g. [11, 34]). The switching is memoryless and the waiting time for

the next switch has an exponential distribution. We can hence model the regime switching by a finite-state

Markov chain. To make it simple, assume that there are only two regimes and the system obeys equation
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(1.1) when it is in regime 1, while it obeys another predator-prey Lotka-Volterra model







ẋ1(t) = x1(t)(a2 − b2x2(t)),

ẋ2(t) = x2(t)(−c2 + d2x1(t))
(1.2)

in regime 2. The switching between these two regimes is governed by a Markov chain r(t) on the state space

S = {1, 2}. The population system under regime switching can therefore be described by the stochastic model







ẋ1(t) = x1(t)(ar(t) − br(t)x2(t)),

ẋ2(t) = x2(t)(−cr(t) + dr(t)x1(t)).
(1.3)

This system is operated as follows: If r(0) = 1, the system obeys equation (1.1) till time τ1 when the Markov

chain jumps to state 2 from state 1; the system will then obey equation (1.2) from time τ1 till time τ2 when

the Markov chain jumps to state 1 from state 2. The system will continue to switch as long as the Markov

chain jumps. If r(0) = 2, the system will switch similarly. In other words, equation (1.3) can be regarded

as equations (1.1) and (1.2) combined, switching from one to the other according to the law of the Markov

chain. Equations (1.1) and (1.2) are hence called the subsystems of equation (1.3).

Clearly, equations (1.1) and (1.2) have their unique positive equilibrium states as (p1, q1) = (c1/d1, a1/b1)

and (p2, q2) = (c2/d2, a2/b2), respectively. Recently, Takeuchi et al. [36] revealed a very interesting and

surprising result: If the two equilibrium states of the subsystems are different, then all positive trajectories

of equation (1.3) always exit from any compact set of R
2
+ with probability 1; on the other hand, if the two

equilibrium states coincide, then the trajectory either leaves from any compact set of R
2
+ or converges to

the equilibrium state. In practice, two equilibrium states are usually different, whence Takeuchi et al. [36]

show that equation (1.3) is neither permanent nor dissipative. This is an important result as it reveals the

significant effect of environmental noise on the population system: both subsystems (1.1) and (1.2) develop

periodically, but switching between them makes them become neither permanent nor dissipative.

Markovian environments are also very popular in many other fields of biology. As examples Padilla

and Adolph [32] present a mathematical model for predicting the expected fitness of phenotypically plastic

organisms experiencing a variable environment and discuss the importance of time delays in this model,

and Anderson [1] discusses the optimal exploitation strategies for an animal population in a Markovian

environment. Additionally Peccoud and Ycart [33] propose a Markovian model for the gene induction process,

and Caswell and Cohen [8] discuss the effects of the spectra of the environmental variation in the coexistence

of metapopulations.

Motivated by Takeuchi et al. [36], we will discuss the effect of telegraph noise on the well-known SIS

epidemic model [17, 18]. The SIS epidemic model is one of the simplest epidemic models and is often used in the

literature to model diseases for which there is no immunity. Examples of such diseases include gonorrhea [18],

pneumococcus [21, 23] and tuberculosis. Continuous time Markov chain and stochastic differential equation

SIS epidemic models are discussed by Brauer et al. [6] in their textbook. Ianelli, Milner and Pugliese [20]

study age-structured epidemic models, as do Feng, Huang and Castillo-Chavez [13]. Neal [30, 31] studies
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deterministic and stochastic SIS epidemic models. Li, Ma and Zhu [22] analyse backward bifurcation in an

SIS epidemic model with vaccination and Van den Driessche and Watmough [37] study backward bifurcation

in an SIS epidemic model with hysteresis. More recently, Andersson and Lindenstrand [3] analyse an open

population stochastic SIS epidemic model where both infectious and susceptible individuals reproduce and die.

Gray et al. [16] establish the stochastic SIS model by parameter perturbation. There are many other examples

of SIS epidemic models in the literature. Also, other two similar models for diseases with permanent immunity

and diseases with a latent period before becoming infectious, the SIR (Susceptible-Infectious-Recovered) and

the SEIR (Susceptible-Exposed-Infectious-Recovered) model respectively are studied by Yang et al. [39] and

stochastic perturbations are introduced in these two models. Liu and Stechlinski [24] analyse the stochastic

SIR model with contact rate being modelled by a switching parameter. Bhattacharyya and Mukhopadhyay

[5] study the SI (Susceptible-Infected) model for prey disease with prey harvesting and predator switching.

Artelejo, Economou and Lopez-Herrero [4] propose some efficient methods to obtain the distribution of the

number of recovered individuals and discuss its relationship with the final epidemic size in the SIS and SIR

stochastic epidemic models.

The classical deterministic SIS epidemic model is described by the following 2-dimensional ODE







dS(t)
dt

= µN − βS(t)I(t) + γI(t) − µS(t),

dI(t)
dt

= βS(t)I(t) − (µ + γ)I(t),
(1.4)

subject to S(t) + I(t) = N , along with the initial values S(0) = S0 > 0 and I(0) = I0 > 0, where I(t) and

S(t) are respectively the number of infectious and susceptible individuals at time t in a population of size

N , and µ and γ−1 are the average death rate and the average infectious period respectively. β is the disease

transmission coefficient, so that β = λ/N , where λ is the disease contact rate of an infective individual. λ

is the per day average number of contacts which if made with a susceptible individual would result in the

susceptible individual becoming infected.

It is easy to see that I(t) obeys the scalar Lotka–Volterra model

dI(t)

dt
= I(t)[βN − µ − γ − βI(t)], (1.5)

which has the explicit solution

I(t) =







[

e−(βN−µ−γ)t
(

1
I0

− β
βN−µ−γ

)

+ β
βN−µ−γ

]−1
, if βN − µ − γ 6= 0,

[

1
I0

+ βt
]−1

, if βN − µ − γ = 0.
(1.6)

Defining the basic reproduction number for the deterministic SIS model

RD
0 =

βN

µ + γ
, (1.7)

we can conclude (see e.g. [35]):

• If RD
0 ≤ 1, limt→∞ I(t) = 0.
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• If RD
0 > 1, limt→∞ I(t) = βN−µ−γ

β
. In this case, I(t) will monotonically decrease or increase to βN−µ−γ

β

if I(0) > βN−µ−γ
β

or < βN−µ−γ
β

, respectively, while I(t) ≡ βN−µ−γ
β

if I(0) = βN−µ−γ
β

.

Taking into account the environmental noise, the system parameters µ, β and γ may experience abrupt

changes. In the same fashion as in Takeuchi et al. [36], we may model these abrupt changes by a Markov

chain. As a result, the classical SIS model (1.4) evolves to a stochastic SIS model with Markovian switching

of the form






dS(t)
dt

= µr(t)N − βr(t)S(t)I(t) + γr(t)I(t) − µr(t)S(t),

dI(t)
dt

= βr(t)S(t)I(t) − (µr(t) + γr(t))I(t),
(1.8)

where r(t) is a Markov chain with a finite state space. The main aim of this paper is to discuss the effect of

the noise in the form of Markov switching. We will not only show the explicit solution but will also investigate

the asymptotic properties, including extinction and persistence.

To make our theory more understandable, we will begin with the special case where the Markov chain

has only 2 states, as in Takeuchi et al. [36]. We will then generalise our theory to the general case where the

Markov chain has a finite number of states, M .

2 SIS Model with Markovian Switching

Throughout this paper, unless otherwise specified, we let (Ω,F , {Ft}t≥0, P) be a complete probability space

with a filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is increasing and right continuous while F0

contains all P-null sets). Let r(t), t ≥ 0, be a right-continuous Markov chain on the probability space taking

values in the state space S = {1, 2} with the generator

Γ =





−ν12 ν12

ν21 − ν21



 .

Here ν12 > 0 is the transition rate from state 1 to 2, while ν21 > 0 is the transition rate from state 2 to 1,

that is

P{r(t + δ) = 2|r(t) = 1} = ν12δ + o(δ) and P{r(t + δ) = 1|r(t) = 2} = ν21δ + o(δ),

where δ > 0. It is well known (see e.g. [2]) that almost every sample path of r(·) is a right continuous step

function with a finite number of sample jumps in any finite subinterval of R+ := [0,∞). More precisely, there

is a sequence {τk}k≥0 of finite-valued Ft-stopping times such that 0 = τ0 < τ1 < · · · < τk → ∞ almost surely

and

r(t) =
∞
∑

k=0

r(τk)I[τk,τk+1)(t), (2.1)

where throughout this paper IA denotes the indicator function of set A. Moreover, given that r(τk) = 1, the

random variable τk+1 − τk follows the exponential distribution with parameter ν12, namely

P(τk+1 − τk ≥ T |r(τk) = 1) = e−ν12T , ∀T ≥ 0,
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while given that r(τk) = 2, τk+1 − τk follows the exponential distribution with parameter ν21, namely

P(τk+1 − τk ≥ T |r(τk) = 2) = e−ν21T , ∀T ≥ 0.

The sample paths of the Markov chain can therefore be simulated easily using these exponential distributions

(we will illustrate this in Section 6 below). Furthermore, this Markov chain has a unique stationary distribution

Π = (π1, π2) given by

π1 =
ν21

ν12 + ν21
, π2 =

ν12

ν12 + ν21
. (2.2)

After recalling these fundamental concepts of the Markov chain, let us return to the stochastic SIS

epidemic model (1.8). We assume that the system parameters βi, µi, γi (i ∈ S) are all positive numbers.

Given that I(t) + S(t) = N , we see that I(t), the number of infectious individuals, obeys the stochastic

Lotka–Volterra model with Markovian switching given by

dI(t)

dt
= I(t)[αr(t) − βr(t)I(t)], (2.3)

where

αi := βiN − µi − γi, i ∈ S. (2.4)

It is sufficient to study equation (2.3) in order to understand the full dynamics of the stochastic SIS epidemic

model (1.8), hence we will concentrate on this equation only in the remainder of this paper. We will refer to

equations (1.8) or (2.3) in the rest of the paper as ‘the stochastic SIS model’ or ‘the stochastic SIS epidemic

model’, although other stochastic versions of the SIS model exist, e.g. a simple Markovian model describing

only demographic stochasticity. The following theorem shows that this equation has an explicit solution for

any given initial value in (0, N).

Theorem 2.1 For any given initial value I(0) = I0 ∈ (0, N), there is a unique solution I(t) on t ∈ R+ to

equation (2.3) such that

P(I(t) ∈ (0, N) for all t ≥ 0) = 1.

Moreover, the solution has the explicit form

I(t) =
exp

(

∫ t

0 αr(s)ds
)

1
I0

+
∫ t

0 exp
(

∫ s

0 αr(u)du
)

βr(s)ds
. (2.5)

Proof. Fix any sample path of the Markov chain. Without loss of generality we may assume that this sample

path has its initial value r(0) = 1, as the proof is the same if r(0) = 2. We first observe from (2.1) that

r(t) = 1 for t ∈ [τ0, τ1). Hence equation (2.3) becomes

dI(t)

dt
= I(t)[α1 − β1I(t)]

on t ∈ [τ0, τ1). But this equation has a unique solution on the entire set of t ∈ R+ and the solution will

remain within (0, N). Hence the solution of equation (2.3), I(t), is uniquely determined on t ∈ [τ0, τ1) and,
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by continuity, for t = τ1 as well. Obtaining I(τ1) ∈ (0, N), we further consider equation (2.3) for t ∈ [τ1, τ2),

which has the form
dI(t)

dt
= I(t)[α2 − β2I(t)].

This equation has a unique solution on t ≥ τ1 and the solution will remain within (0, N). Hence the solution

of equation (2.3), I(t), is uniquely determined on t ∈ [τ1, τ2) and, by continuity, for t = τ2 as well. Repeating

this procedure, we see that equation (2.3) has a unique solution I(t) on t ∈ R+ and the solution remains

within (0, N) with probability one.

After showing I(t) ∈ (0, N), we may define

y(t) =
1

I(t)
, t ≥ 0,

in order to obtain the explicit solution. Compute

dy(t)

dt
= −

1

I(t)2
dI(t)

dt

= −
1

I(t)2
I(t)(αr(t) − βr(t)I(t))

= βr(t) −
αr(t)

I(t)

= βr(t) − αr(t)y(t).

By the well-known variation-of-constants formula (see e.g. [28, p.96]), we have

y(t) = Φ(t)
(

y(0) +

∫ t

0
Φ−1(s)βr(s) ds

)

,

where Φ(t) = e−
R t

0
αr(s) ds. This yields the desired explicit solution (2.5) immediately. 2

3 The Basic Reproduction Number

Naturally we wish to examine the behaviour of the stochastic SIS epidemic model (2.3) and we may ask

what is the corresponding basic reproduction number RS
0 ? Recall that the basic reproduction number is the

expected number of secondary cases caused by a single newly-infected case entering the disease-free population

at equilibrium [10].

In our case the disease-free equilibrium (DFE) is S = N, I = 0. The individuals can be divided into two

types, those who arrive when r(t) = 1, and those that arrive when r(t) = 2. Suppose that a newly infected

individual enters the DFE when the Markov chain is in state 1. Then the next events that can happen are

that the individual dies at rate µ1, recovers at rate γ1 or the Markov chain switches at rate ν12. Hence the

expected time until the first event is

1

µ1 + γ1 + ν12
.

During this time each of the N susceptibles at the DFE is infected at rate β1. So the total expected number

of people infected in this time interval is
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β1N

µ1 + γ1 + ν12
. (3.1)

If the first event is either that the infected individual dies or recovers, no more people will be infected

before the first switch. If the first event is that the Markov chain switches the expected number of people

infected before the first switch is given by (3.1). Hence whatever happens the expected number of people

infected before the first switch is given by (3.1).

The expected number of individuals infected between the first and second switches is

ν12

µ1 + γ1 + ν12

β2N

µ2 + γ2 + ν21

and between the second and third switches

ν21

µ2 + γ2 + ν21

ν12

µ1 + γ1 + ν12

β1N

µ1 + γ1 + ν12
= p

β1N

µ1 + γ1 + ν12

where p =
ν12ν21

(µ1 + γ1 + ν12)(µ2 + γ2 + ν21)
.

Hence this individual infects in total

m11 =
β1N

µ1 + γ1 + ν12
(1 + p + p2 + . . . ) =

β1N

µ1 + γ1 + ν12

1

1 − p

individuals while the Markov chain is in state 1 and

m12 =
ν12

µ1 + γ1 + ν12

β2N

µ2 + γ2 + ν21

1

1 − p

individuals while the Markov chain is in state 2.

Similarly we can derive the expected number of individuals infected by a single newly infected individual

entering the DFE when the Markov chain is in state 2. We deduce that the next generation matrix giving the

expected number of secondary cases caused by a single newly infected individual entering the DFE is





m11 m12

m21 m22



 =
1

1 − p





a1 p1a2

p2a1 a2



 ,

where a1 =
β1N

µ1 + γ1 + ν12
, a2 =

β2N

µ2 + γ2 + ν21
, p1 =

ν12

µ1 + γ1 + ν12
and

p2 =
ν21

µ2 + γ2 + ν21
.

The basic reproduction number for the stochastic epidemic model is the largest eigenvalue of this matrix

RS
0 =

a1 + a2 +
√

(a1 + a2)2 − 4a1a2(1 − p)

2(1 − p)
. (3.2)

However we do not pursue this further here.
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4 Extinction

In the study of the SIS epidemic model, extinction is one of the important issues. In this section we will discuss

this issue. Recall that for the deterministic SIS epidemic model (1.5), the basic reproduction number RD
0 was

also the threshold between disease extinction and persistence, with extinction for RD
0 ≤ 1 and persistence for

RD
0 > 1. In the stochastic model, there are different types of extinction and persistence, for example almost

sure extinction, extinction in mean square and extinction in probability. In the rest of the paper we examine

a threshold

T S
0 =

π1β1N + π2β2N

π1(µ1 + γ1) + π2(µ2 + γ2)
(4.1)

for almost sure extinction or persistence of our stochastic epidemic model. However this threshold is different

to RS
0 which might be more relevant to other types of extinction or persistence.

We will see later that the stochastic SIS model (2.3) will become extinct (meaning that limt→∞I(t) = 0)

with probability one if T S
0 < 1. Before we state this result, let us state a proposition which gives an equivalent

condition for T S
0 < 1 in terms of the system parameters αi and the stationary distribution of the Markov

chain.

Proposition 4.1 We have the following alternative condition on the value of T S
0 :

• T S
0 < 1 if and only if π1α1 + π2α2 < 0;

• T S
0 = 1 if and only if π1α1 + π2α2 = 0;

• T S
0 > 1 if and only if π1α1 + π2α2 > 0.

The proof of this proposition is straightforward, so is omitted. We can now state our theory on extinction.

Theorem 4.2 If T S
0 < 1, then, for any given initial value I0 ∈ (0, N), the solution of the stochastic SIS

epidemic model (2.3) obeys

lim sup
t→∞

1

t
log(I(t)) ≤ α1π1 + α2π2 a.s. (4.2)

By Proposition 4.1, we hence conclude that I(t) tends to zero exponentially almost surely. In other words, the

disease dies out with probability one.

Proof. It is easy to see that
d log(I(t))

dt
= αr(t) − βr(t)I(t). (4.3)

This implies that, for any t > 0,

log(I(t))

t
≤

log(I(0))

t
+

1

t

∫ t

0
αr(s)ds,
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since βr(t) > 0 and I(t) ∈ (0, N). Letting t → ∞ we hence obtain

lim sup
t→∞

1

t
log(I(t)) ≤ lim sup

t→∞

1

t

∫ t

0
αr(s)ds.

However, by the ergodic theory of the Markov chain (see e.g. [2]) we have

lim
t→∞

1

t

∫ t

0
αr(s)ds = α1π1 + α2π2 a.s.

We therefore must have

lim sup
t→∞

1

t
log(I(t)) ≤ α1π1 + α2π2 a.s.,

as required. 2

Let us now make a few comments. First of all, let us recall that the stochastic SIS model (2.3) can be

regarded as the result of the following two subsystems

dI(t)

dt
= I(t)[α1 − β1I(t)] (4.4)

and
dI(t)

dt
= I(t)[α2 − β2I(t)], (4.5)

switching from one to the other according to the law of the Markov chain. If both α1 < 0 and α2 < 0, then

the corresponding RD
0 values for both subsystems (4.4) and (4.5) are less than 1, whence both subsystems

become extinct. In this case, T S
0 for the stochastic SIS model (2.3) is less than 1, hence it will become extinct,

and of course this is not surprising. However, if only one of α1 and α2 is negative, say α1 < 0 and α2 > 0, for

example, one subsystem (4.4) becomes extinct but the other (4.5) is persistent. However, if the rate of the

Markov chain switching from state 2 to 1 is relatively faster than that from 1 to 2, so that α1π1 + α2π2 < 0,

then the overall system (2.3) will become extinct. This reveals the important role of the Markov chain in the

extinction.

We next recall that in the deterministic SIS model (1.5) the disease will always go extinct even if RD
0 = 1.

The reader may ask what happens to the stochastic SIS model (2.3) if the corresponding T S
0 = 1? Although

we have a strong feeling that the disease will always become extinct, we have not been able to prove it so far.

In Section 6.3 we show some simulations to illustrate this case.

5 Persistence

Let us now turn to the case when T S
0 > 1. The following theorem shows that the disease will be persistent in

this case, meaning that limt→∞I(t) > 0.

Theorem 5.1 If T S
0 > 1, then, for any given initial value I0 ∈ (0, N), the solution of the stochastic SIS

model (2.3) has the properties that

lim inf
t→∞

I(t) ≤
π1α1 + π2α2

π1β1 + π2β2
a.s. (5.1)
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and

lim sup
t→∞

I(t) ≥
π1α1 + π2α2

π1β1 + π2β2
a.s. (5.2)

In other words, the disease will reach the neighbourhood of the level π1α1+π2α2
π1β1+π2β2

infinitely many times with

probability one.

Proof. Let us first prove assertion (5.1). If this were not true, then we can find an ε > 0 sufficiently small

for P(Ω1) > 0 where

Ω1 =

{

ω ∈ Ω : lim inf
t→∞

I(t) >
π1α1 + π2α2

π1β1 + π2β2
+ ε

}

. (5.3)

On the other hand, by the ergodic theory of the Markov chain, we have that P(Ω2) = 1, where for any ω ∈ Ω2,

lim
t→∞

1

t

∫ t

0

(

αr(s)−βr(s)

[π1α1 + π2α2

π1β1 + π2β2
+ ε

])

ds

= π1

(

α1 − β1

[π1α1 + π2α2

π1β1 + π2β2
+ ε

])

+ π2

(

α2 − β2

[π1α1 + π2α2

π1β1 + π2β2
+ ε

])

= −(π1β1 + π2β2)ε. (5.4)

Now consider any ω ∈ Ω1 ∩ Ω2. Then there is a positive number T = T (ω) such that

I(t) ≥
π1α1 + π2α2

π1β1 + π2β2
+ ε ∀t ≥ T.

It then follows from (4.3) that

log(I(t)) ≤ log(I0) +

∫ T

0
(αr(s) − βr(s)I(s))ds +

∫ t

T

(

αr(s) − βr(s)

[π1α1 + π2α2

π1β1 + π2β2
+ ε

])

ds

for all t ≥ T . Dividing both sides by t and then letting t → ∞, we obtain that

lim sup
t→∞

1

t
log(I(t)) ≤ −(π1β1 + π2β2)ε,

where (5.4) has been used. This implies that

lim
t→∞

I(t) = 0.

But this contradicts (5.3). The required assertion (5.1) must therefore hold.

The procedure to prove assertion (5.2) is very similar. In fact if (5.2) were not true, we can then find an

ε > 0 sufficiently small for P(Ω3) > 0, where

Ω3 =

{

ω ∈ Ω : lim sup
t→∞

I(t) <
π1α1 + π2α2

π1β1 + π2β2
− ε

}

. (5.5)

By the ergodic theory we also have that P(Ω4) = 1, where for any ω ∈ Ω4,

lim
t→∞

1

t

∫ t

0

(

αr(s)−βr(s)

[π1α1 + π2α2

π1β1 + π2β2
− ε

])

ds

= π1

(

α1 − β1

[π1α1 + π2α2

π1β1 + π2β2
− ε

])

+ π2

(

α2 − β2

[π1α1 + π2α2

π1β1 + π2β2
− ε

])

= (π1β1 + π2β2)ε. (5.6)
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If we consider any ω ∈ Ω3 ∩ Ω4, there is a positive number T = T (ω) such that

I(t) ≤
π1α1 + π2α2

π1β1 + π2β2
− ε ∀t ≥ T.

From (4.3) we have that

log(I(t)) ≥ log(I0) +

∫ T

0
(αr(s) − βr(s)I(s))ds +

∫ t

T

(

αr(s) − βr(s)

[π1α1 + π2α2

π1β1 + π2β2
− ε

])

ds

for all t ≥ T . Dividing both sides by t and then letting t → ∞ while using (5.6) as well, we obtain that

lim inf
t→∞

1

t
log(I(t)) ≥ (π1β1 + π2β2)ε.

This implies that

lim
t→∞

I(t) → ∞,

which contradicts (5.5). Therefore assertion (5.2) must hold.2

To reveal more properties of the stochastic SIS model, we observe from Proposition 4.1 that T S
0 > 1 is

equivalent to the condition that π1α1 + π2α2 > 0. This may be divided into two cases: (a) both α1 and

α2 are positive; and (b) only one of α1 and α2 is positive. Without loss of generality, we may assume that

0 < α1/β1 = α2/β2 or 0 < α1/β1 < α2/β2 in Case (a), while α1/β1 ≤ 0 < α2/β2 in Case (b). So there

are three different cases to be considered under condition T S
0 > 1. Let us present a lemma in order to show

another new result.

Lemma 5.2 The following statements hold with probability one:

(i) If 0 < α1/β1 = α2/β2, then I(t) = α1/β1 for all t > 0 when I0 = α1/β1.

(ii) If 0 < α1/β1 < α2/β2, then I(t) ∈ (α1/β1, α2/β2) for all t > 0 whenever I0 ∈ (α1/β1, α2/β2).

(iii) If α1/β1 ≤ 0 < α2/β2, then I(t) ∈ (0, α2/β2) for all t > 0 whenever I0 ∈ (0, α2/β2).

Proof. Case (i) is obvious. To prove Case (ii), we may assume, without loss of generality, that r(0) = 1.

Recalling (2.1) and the properties of the deterministic SIS model (1.5) which we stated in Section 1, we

see that I(t) will monotonically decrease during the time interval [τ0, τ1] but never reach α1/β1, whence

I(t) ∈ (α1/β1, α2/β2). At time τ1, the Markov chain switches to state 2 and will not jump to state 1 until

time τ2. During this time interval [τ1, τ2], I(t) will monotonically increase but never reach α2/β2, whence

I(t) ∈ (α1/β1, α2/β2) again. Repeating this argument, we see that I(t) will remain within (α1/β1, α2/β2)

forever. Similarly, we can show Case (iii). 2

In the following study we will use the Markov property of the solutions (see e.g. [27, 29]). For this purpose,

let us denote by PI0,r0 the conditional probability measure generated by the pair of processes (I(t), r(t)) given

the initial condition (I(0), r(0)) = (I0, r0) ∈ (0, N) × S.

Theorem 5.3 Assume that T S
0 > 1 and let I0 ∈ (0, N) be arbitrary. The following statements hold with

probability one:
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(i) If 0 < α1/β1 = α2/β2, then limt→∞ I(t) = α1/β1.

(ii) If 0 < α1/β1 < α2/β2, then
α1

β1
≤ lim inf

t→∞
I(t) ≤ lim sup

t→∞
I(t) ≤

α2

β2
.

(iii) If α1/β1 ≤ 0 < α2/β2, then

0 ≤ lim inf
t→∞

I(t) ≤ lim sup
t→∞

I(t) ≤
α2

β2
.

Proof. Case (i). If I0 = α1/β1, then I(t) = α1/β1 for all t ≥ 0, whence the assertion holds. If I0 < α1/β1,

it is easy to see that I(t) increases monotonically on t ≥ 0, hence limt→∞ I(t) exists. By Theorem 5.1, we

therefore have

lim
t→∞

I(t) =
π1α1 + π2α2

π1β1 + π2β2
a.s.

But, given α1/β1 = α2/β2, we compute

π1α1 + π2α2

π1β1 + π2β2
=

π1α1 + π2α1β2/β1

π1β1 + π2β2
=

α1

β1
.

We therefore have limt→∞ I(t) = α1/β1 a.s. Similarly, we can show this for I0 > α1/β1.

Case (ii). If I0 ∈ (α1/β1, α2/β2), then the assertion follows from Lemma 5.2 directly. Let us now assume

that I0 ≥ α2/β2. Given 0 < α1/β1 < α2/β2, it is easy to show that

α1

β1
<

π1α1 + π2α2

π1β1 + π2β2
<

α2

β2
.

Consider a number

κ ∈
(π1α1 + π2α2

π1β1 + π2β2
,

α2

β2

)

,

and define the stopping time

ρκ = inf{t ≥ 0 : I(t) ≤ κ},

where throughout this paper we set inf ∅ = ∞ (in which ∅ denotes the empty set as usual). By Theorem 5.1

we have

P(ρk < ∞) = 1,

while by the continuity of I(t) we have I(ρκ) = κ. Set

Ω̄ =
{

α1/β1 ≤ lim inf
t→∞

I(t) ≤ lim sup
t→∞

I(t) ≤ α2/β2

}

and denote its indicator function by IΩ̄. By the strong Markov property, we compute

P(Ω̄) = E(IΩ̄) = E(E(IΩ̄|Fρκ)) =

E(E(IΩ̄|I(ρκ), r(ρκ))) = E(PI(ρκ),r(ρκ)(Ω̄)) = E(Pκ,r(ρκ)(Ω̄)).

But, by Lemma 5.2, Pκ,r(ρκ)(Ω̄) = 1 and hence we have P(Ω̄) = 1 as required. Similarly, we can show that

P(Ω̄) = 1 for I0 ≤ α1/β1.
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Case (iii). It is obvious that 0 ≤ lim inft→0 I(t), while the assertion that lim inft→0 I(t) ≤ α2/β2 can be

proved in the same way as Case (ii) was proved. The proof is therefore complete. 2

Under the condition T S
0 > 1, the theorem above shows precisely that I(t) will tend to α1/β1 with

probability one if α1/β1 = α2/β2. However, it is quite rare to have α1/β1 = α2/β2 in practice. It is therefore

more useful to study the case when, say, α1/β1 < α2/β2 in a bit more detail. In the proof above, we have in

fact shown a slightly stronger result than Theorem 5.3 states, namely we have shown that

P(I(t) ∈ (0 ∨ (α1/β1), α2/β2) for all t ≥ ρκ) = 1, (5.7)

where we use the notation a∨ b = max(a, b). It would be interesting to find out how I(t) will vary within the

interval (0 ∨ (α1/β1), α2/β2) in the long term. The following theorem shows that I(t) can take any value up

to the boundaries of the interval infinitely many times (though never reach them) with positive probability.

Theorem 5.4 Assume that T S
0 > 1 and 0 < α1

β1
< α2

β2
, and let I0 ∈ (0, N) be arbitrary. Then for any ε > 0,

sufficiently small for
α1

β1
+ ε <

π1α1 + π2α2

π1β1 + π2β2
<

α2

β2
− ε,

the solution of the stochastic SIS epidemic model (2.3) has the properties that

P

(

lim inf
t→∞

I(t) <
α1

β1
+ ε

)

≥ e−ν12T1(ε), (5.8)

and

P

(

lim sup
t→∞

I(t) >
α2

β2
− ε

)

≥ e−ν21T2(ε), (5.9)

where T1(ε) > 0 and T2(ε) > 0 are defined by

T1(ε) =
1

α1

(

log
(β1

α1
−

β2

α2

)

+ log
(α1

β1
+ ε

)

− log
(εβ1

α1

))

(5.10)

and

T2(ε) =
1

α2

(

log
(β1

α1
−

β2

α2

)

+ log
(α2

β2
− ε

)

− log
(εβ2

α2

))

. (5.11)

Proof. Let T > 0 be arbitrary. Define the stopping time

σ1 = inf{t ≥ T : I(t) ∈ (α1/β1 + ε, α2/β2 − ε)}.

By Theorem 5.1, we have P(σ1 < ∞) = 1, while we see from the proof of Theorem 5.3 that

P(I(t) ∈ (α1/β1, α2/β2) for all t ≥ σ1) = 1. (5.12)

To prove assertion (5.8), we define another stopping time

σ2 = inf{t ≥ σ1 : r(t) = 1}.

Clearly, P(σ2 < ∞) = 1 and by the right-continuity of the Markov chain, r(σ2) = 1. By the memoryless

property of an exponential distribution, the probability that the Markov chain will not jump to state 2 before

σ2 + T1(ε) is

P(Ω1) = e−ν12T1(ε), (5.13)
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where Ω1 = {r(σ2 + t) = 1 for all t ∈ [0, T1(ε)]}. Now, consider any ω ∈ Ω1 and consider I(t) on t ∈

[σ2, σ2 + T1(ε)]. Note that it obeys the differential equation

dI(t)

dt
= I(t)(α1 − β1I(t)),

with initial value I(σ2) ∈ (α1/β1, α2/β2). By the explicit solution of this equation (see Section 1), we have

I(σ2 + T1(ε)) =
[

e−α1T1(ε)
( 1

I(σ2)
−

β1

α1

)

+
β1

α1

]−1
.

On the other hand, by (5.10), we have

[

e−α1T1(ε)
(β2

α2
−

β1

α1

)

+
β1

α1

]−1
=

α1

β1
+ ε.

Since I(σ2) < α2/β2, we must therefore have

I(σ2 + T1(ε)) <
α1

β1
+ ε.

Consequently

P

(

inf
T≤t<∞

I(t) <
α1

β1
+ ε

)

≥ P(Ω1) = e−ν12T1(ε). (5.14)

Noting that
(

lim inf
t→∞

I(t) <
α1

β1
+ ε

)

=
⋂

0<T<∞

(

inf
T≤t<∞

I(t) <
α1

β1
+ ε

)

,

we can let T → ∞ in (5.14) to obtain assertion (5.8). Similarly, we can prove the other assertion (5.9). 2

Theorem 5.5 Assume that T S
0 > 1 (namely π1α1 +π2α2 > 0) and α1

β1
≤ 0 < α2

β2
. Let I0 ∈ (0, N) be arbitrary.

Then for any ε > 0, sufficiently small for

ε <
π1α1 + π2α2

π1β1 + π2β2
<

α2

β2
− ε,

the solution of the stochastic SIS model (2.3) has the properties that

P

(

lim inf
t→∞

I(t) < ε
)

≥ e−ν12T3(ε), (5.15)

and

P

(

lim sup
t→∞

I(t) >
α2

β2
− ε

)

≥ e−ν21T4(ε), (5.16)

where T3(ε) > 0 and T4(ε) > 0 are defined by

T3(ε) =
1

α1

(

log
(β2

α2
−

β1

α1

)

+ log
(

ε
α1

β1

)

− log
(α1

β1
− ε

))

(5.17)

and

T4(ε) =
1

α2

(

log
(2

ε
−

β2

α2

)

+ log
(α2

β2
− ε

)

− log
(

ε
β2

α2

))

. (5.18)
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Proof. Let T > 0 be arbitrary. Define the stopping time

σ3 = inf{t ≥ T : I(t) ∈ (ε, α2/β2 − ε)}.

By Theorem 5.1, we have P(σ3 < ∞) = 1, while we see from the proof of Theorem 5.3 that

P(I(t) ∈ (0, α2/β2) for all t ≥ σ3) = 1. (5.19)

To prove assertion (5.15), we define another stopping time

σ4 = inf{t ≥ σ3 : r(t) = 1}.

Clearly, P(σ4 < ∞) = 1 and by the right-continuity of the Markov chain, r(σ4) = 1. By the memoryless

property of an exponential distribution, the probability that the Markov chain will not jump to state 2 before

σ4 + T3(ε) is

P(Ω2) = e−ν12T3(ε), (5.20)

where Ω2 = {r(σ4 + t) = 1 for all t ∈ [0, T3(ε)]}. Now, consider any ω ∈ Ω2 and consider I(t) on t ∈

[σ4, σ4 + T3(ε)]. Note that it obeys the differential equation

dI(t)

dt
= I(t)(α1 − β1I(t)),

with initial value I(σ4) ∈ (0, α2/β2). By the explicit solution of this equation (see Section 1), we have

I(σ4 + T3(ε)) =
[

e−α1T3(ε)
( 1

I(σ4)
−

β1

α1

)

+
β1

α1

]−1
.

On the other hand, by (5.17), we have

[

e−α1T3(ε)
(β2

α2
−

β1

α1

)

+
β1

α1

]−1
= ε.

Since I(σ4) < α2/β2, we must therefore have

I(σ4 + T1(ε)) < ε.

Consequently

P

(

inf
T≤t<∞

I(t) < ε
)

≥ P(Ω2) = e−ν12T3(ε). (5.21)

Noting that
(

lim inf
t→∞

I(t) < ε
)

=
⋂

0<T<∞

(

inf
T≤t<∞

I(t) < ε
)

,

we can let T → ∞ in (5.21) to obtain assertion (5.15).

To prove the other assertion (5.16) we define the stopping time

σ5 = inf{t ≥ T : r(t) = 2},

where T > 0 is arbitrary. Clearly P(σ5 < ∞) = 1. We define another stopping time

σ6 = inf
{

t ≥ σ5 : r(t) = 2, I(t) ≥
1

2

(π1α1 + π2α2

π1β1 + π2β2

)}

.
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Suppose that I(t) < 1
2

(

π1α1+π2α2
π1β1+π2β2

)

when t = σ5, I(t) will eventually increase across this level by Theorem 5.1.

Note that I(t) increases monotonically when r(t) = 2 whilst it decreases monotonically when r(t) = 1. If r(t)

switches back to state 1 before I(t) increases over this level and starts decreasing, since the lim supt→∞ I(t) ≥

π1α1+π2α2
π1β1+π2β2

, I(t) will increase across this level later on i.e. r(t) = 2 when I(t)=1
2

(

π1α1+π2α2
π1β1+π2β2

)

. Therefore we

have P(σ6 < ∞) = 1. And by the right-continuity of the Markov chain, r(σ6) = 2. By the memoryless

property of an exponential distribution, the probability that the Markov chain will not jump to state 1 before

σ6 + T4(ε) is

P(Ω3) = e−ν21T4(ε), (5.22)

where Ω3 = {r(σ6 + t) = 2 for all t ∈ [0, T4(ε)]}. Now, consider any ω ∈ Ω3 and consider I(t) on t ∈

[σ6, σ6 + T4(ε)]. Note that it obeys the differential equation

dI(t)

dt
= I(t)(α2 − β2I(t)),

with initial value I(σ6) ≥ 1
2

(

π1α1+π2α2
π1β1+π2β2

)

> ε
2 . By the explicit solution of this equation (see Section 1), we

have

I(σ6 + T4(ε)) =
[

e−α2T4(ε)
( 1

I(σ6)
−

β2

α2

)

+
β2

α2

]−1
.

On the other hand, by (5.18), we have

[

e−α2T4(ε)
(2

ε
−

β2

α2

)

+
β2

α2

]−1
=

α2

β2
− ε.

Since I(σ6) > ε
2 , we must therefore have

I(σ6 + T4(ε)) >
α2

β2
− ε.

Consequently

P

(

sup
T≤t<∞

I(t) >
α2

β2
− ε

)

≥ P(Ω3) = e−ν21T4(ε). (5.23)

Noting that
(

lim sup
t→∞

I(t) >
α2

β2
− ε

)

=
⋂

0<T<∞

(

sup
T≤t<∞

I(t) >
α2

β2
− ε

)

,

we can let T → ∞ in (5.23) to obtain assertion (5.16). 2

Define

RD
01 =

β1N

µ1 + γ1
and RD

02 =
β2N

µ2 + γ2
.

Note that if αj > 0 then RD
0j > 1 for j = 1, 2 and

αj

βj
= N

(

1 −
1

RD
0j

)

is the endemic level of disease after a long time in the SIS model (1.4) with β = βj , µ = µj and γ = γj .

If α1 ≤ 0 then RD
01 ≤ 1 and disease eventually dies out in the corresponding SIS model. So in general in
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the first model the disease prevalence eventually approaches 0 ∨ (α1/β1) and in the second model the disease

prevalence eventually approaches α2/β2. These are the two levels between which the disease oscillates in the

Markov chain switching model.

6 Simulations

In this section we shall assume that all parameters are given in appropriate units.

6.1 Extinction case

Example 6.1.1 Assume that the system parameters are given by

µ1 = 0.45, µ2 = 0.05, γ1 = 0.35, γ2 = 0.15, β1 = 0.001, β2 = 0.004, N = 100,

ν12 = 0.6, and ν21 = 0.9.

So α1 = −0.7, α2 = 0.2, π1 = 0.6, and π2 = 0.4 (see Section 2 for definitions).

Noting that

α1π1 + α2π2 = −0.34,

we can therefore conclude, by Theorem 4.2, that for any given initial value I(0) = I0 ∈ (0, N), the solution of

(2.3) obeys

lim sup
t→∞

1

t
log(I(t)) ≤ −0.34 < 0 a.s.

That is, I(t) will tend to zero exponentially with probability one.

The computer simulation in Figure 1(a) supports this result clearly, illustrating extinction of the disease.

Furthermore, α1 < 0 while α2 > 0 in this case, which means that one subsystem dies out while the other

subsystem is persistent. Figure 1(a) shows some decreasing then increasing behaviour early on, but the general

trend tends to zero, illustrating extinction for the system as a whole. The Euler–Maruyama (EM) method

[28, 29] is also applied to approximate the solution I(t). The two lines are very close to each other, showing

that the EM method gives a very good approximation to the true solution in this case.

Example 6.1.2 Assume that the system parameters are given by

µ1 = 0.45, µ2 = 0.05, γ1 = 0.35, γ2 = 0.15, β1 = 0.006, β2 = 0.0015, N = 100,

ν12 = 0.6, and ν21 = 0.9.

So α1 = −0.2, α2 = −0.05, π1 = 0.6, and π2 = 0.4 (see Section 2 for definitions).

Noting that

α1π1 + α2π2 = −0.14,

we can therefore conclude, by Theorem 4.2, that for any given initial value I(0) = I0 ∈ (0, N), the solution of

(2.3) obeys

lim sup
t→∞

1

t
log(I(t)) ≤ −0.14 < 0 a.s.
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Figure 1: Computer simulation of I(t) and its corresponding Markov chain r(t), using the parameter values in

Example 6.1.1 for (a) and in Example 6.1.2 for (b), I(0) = 60 for both cases, and the exponential distribution

for the switching times of r(t), with r(0) = 1. The black line is for I(t) using formula (2.5) and the red line is

for the EM method. (The two lines are very close to each other, so we hardly see the black line in the plot.)

That is, I(t) will tend to zero exponentially with probability one. The computer simulation in Figure 1(b)

supports this result clearly, illustrating extinction of the disease. Both α1 and α2 are less than zero in this

case, which means that both subsystems die out. Figure 1(b) shows a trend of decreasing all the time but at

different speeds, which reveals that property. As before, the EM method gives a good approximation in this

case as well.

6.2 Persistence case

Example 6.2.1 Assume that the system parameters are given by

µ1 = 0.45, µ2 = 0.05, γ1 = 0.35, γ2 = 0.15, β1 = 0.01, β2 = 0.012, N = 100,

ν12 = 0.6, and ν21 = 0.9.

So α1 = 0.2, α2 = 1, π1 = 0.6, and π2 = 0.4.
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Noting that

α1π1 + α2π2 = 0.52,

we can therefore conclude, by Theorem 5.3, that for any given initial value I(0) = I0 ∈ (0, N), the solution of

(2.3) obeys
α1

β1
= 20 ≤ lim inf

t→∞
I(t) ≤ lim sup

t→∞
I(t) ≤ 83.33 =

α2

β2
.

That is, I(t) will eventually enter the region (20, 83.33) if I(0) is not in this region, and will be attracted in

this region once it has entered. Also, by Theorem 5.4, I(t) can take any value up to the boundaries of (20,

83.33) but never reach them.

The computer simulations in Figure 2(a), (b) and (c), using different initial values I(0), support these

results clearly. As before, the EM method gives a good approximation of the true solution.
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Figure 2: Computer simulation of I(t) and its corresponding Markov chain r(t), using the parameter values in

Example 6.2.1, with I(0) = 15 for (a), I(0) = 60 for (b) and I(0) = 90 for (c), and the exponential distribution

for the switching times of r(t), with r(0) = 1. The black line is for I(t) using formula (2.5) and the red line

for the EM method. (The two lines are very close to each other, so we hardly see the black line in the plot.)

The horizontal lines in the plot of I(t) indicate levels α1
β1

and α2
β2

.
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Example 6.2.2 Assume that the system parameters are given by

µ1 = 0.45, µ2 = 0.05, γ1 = 0.35, γ2 = 0.15, β1 = 0.004, β2 = 0.012, N = 100,

ν12 = 0.6, and ν21 = 0.9.

So α1 = −0.4, α2 = 1, π1 = 0.6, and π2 = 0.4 .

Noting that

α1π1 + α2π2 = 0.16,

we can therefore conclude, by Theorem 5.3, that for any given initial value I(0) = I0 ∈ (0, N), the solution of

(2.3) obeys

0 ≤ lim inf
t→∞

I(t) ≤ lim sup
t→∞

I(t) ≤ 83.33 =
α2

β2
.

That is, I(t) will eventually enter the region (0, 83.33) if I(0) is not in this region, and will be attracted in

this region once it has entered. Also, by Theorem 5.5, I(t) can take any value up to the boundaries of (0,

83.33) but never reach them.

The computer simulations in Figure 3 support this result clearly.
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Figure 3: Computer simulation of I(t) using the parameter values in Example 6.2.2 and its corresponding

Markov chain r(t), using formula (2.5) (black line) and the EM method (red line) for I(t), with I(0) = 60,

and the exponential distribution for the switching times of r(t), with r(0) = 1. (The two lines are very close

to each other, so we hardly see the black line in the plot.) The horizontal lines in the plot of I(t) indicate the

levels 0 and α2
β2

.

6.3 T
S
0 =1 Case

Example 6.3.1 Assume that the system parameters are given by

µ1 = 0.45, µ2 = 0.05, γ1 = 0.35, γ2 = 0.15, β1 = 0.006, β2 = 0.005, N = 100,

ν12 = 0.6, and ν21 = 0.9.
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So α1 = −0.2, α2 = 0.3, π1 = 0.6, and π2 = 0.4.

Note that

α1π1 + α2π2 = 0

in this case, which is equivalent to T S
0 = 1. As mentioned in Section 4, we have not been able to prove the

behaviour of I(t) in this case. However, the simulation results in Figure 4 confirm our suspicion that the

disease will always become extinct.
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Figure 4: Computer simulation of I(t) using the parameter values in Example 6.3.1, using formula (2.5) for

I(t), with I(0) = 60, and the exponential distribution for the switching times of r(t), with r(0) = 1.

7 Generalisation

We have discussed the simplest case where the Markov chain has only two states, in the previous sections.

Now we are going to generalise the results to the case where the Markov chain r(t) has finite state space

S = {1, 2, ...,M}. The generator for r(t) is defined as

Γ = (νij)M×M ,

where νii = −
∑

1≤j≤M,j 6=i νij, and νij > 0 (i 6= j) is the transition rate from state i to j, that is

P{r(t + δ) = j|r(t) = i} = νijδ + o(δ),

where δ > 0. As before, there is a sequence {τk}k≥0 of finite-valued Ft-stopping times such that 0 = τ0 <

τ1 < · · · < τk → ∞ almost surely and

r(t) =
∞
∑

k=0

r(τk)I[τk,τk+1)(t).

Moreover, given that r(τk) = i, the random variable τk+1 − τk follows the exponential distribution with

parameter −νii, namely

P(τk+1 = j|τk = i) =
νij

−νii
, j 6= i, P(τk+1 − τk ≥ T |r(τk) = i) = eνiiT , ∀T ≥ 0.

21



Furthermore, the unique stationary distribution of this Markov chain Π = (π1, π2, ..., πM ) satisfies






ΠΓ = 0
∑M

i=1 πi = 1.

Following a similar procedure we still can show that for any given initial value I(0) = I0 ∈ (0, N), there

is a unique solution I(t) on t ∈ R+ to equation (2.3) such that

P(I(t) ∈ (0, N) for all t ≥ 0) = 1,

and the solution still has the form (2.5).

In the general finite state space Markov chain case it is possible to derive an explicit expression for the

basic reproduction number RS
0 in the stochastic Markov switching model analogous to (3.2) expressed as the

largest eigenvalue of a positive matrix. We define T S
0 for the general case as

T S
0 =

∑M
k=1 πkβkN

∑M
k=1 πk(µk + γk)

.

Similarly to Proposition 4.1, we have the following alternative conditions on the value of T S
0 :

Proposition 7.1 We have the following alternative condition on the value of T S
0 :

• T S
0 < 1 if and only if

∑M
k=1 πkαk < 0;

• T S
0 = 1 if and only if

∑M
k=1 πkαk = 0;

• T S
0 > 1 if and only if

∑M
k=1 πkαk > 0.

If T S
0 < 1, similarly to Theorem 4.2, we can show:

Theorem 7.2 For any given initial value I0 ∈ (0, N), the solution of the stochastic SIS model (2.3) obeys

lim sup
t→∞

1

t
log(I(t)) ≤

M
∑

k=1

πkαk a.s.

By the more general condition stated above, we hence conclude that I(t) tends to zero exponentially almost

surely. This means that the disease dies out with probability one.

For the case that T S
0 > 1, Theorem 5.1 can be generalised as follows:

Theorem 7.3 If T S
0 > 1, for any given initial value I0 ∈ (0, N), the solution of the stochastic SIS model

(2.3) has the properties that

lim inf
t→∞

I(t) ≤

∑M
k=1 πkαk

∑M
k=1 πkβk

a.s.

and

lim sup
t→∞

I(t) ≥

∑M
k=1 πkαk

∑M
k=1 πkβk

a.s.,

which means the disease will reach the neighbourhood of the level
PM

k=1 πkαk
PM

k=1 πkβk

infinitely many times with proba-

bility one. This shows that the disease will be persistent in this case.
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Lemma 5.2 can be generalised as follows:

Lemma 7.4 Without loss of generality we assume that α1/β1 ≤ α2/β2 ≤ ... ≤ αM/βM and the following

statements hold with probability one:

(i) If 0 < α1/β1 = α2/β2 = ... = αM/βM , then I(t) = α1/β1 for all t > 0 when I0 = α1/β1.

(ii) If 0 < α1/β1 ≤ α2/β2 ≤ ... ≤ αM/βM , then I(t) ∈ (α1/β1, αM/βM ) for all t > 0 whenever I0 ∈

(α1/β1, αM/βM ).

(iii) If αj/βj ≤ 0 (for some j ∈ (1,M − 1)) and α1/β1 ≤ α2/β2 ≤ ... ≤ αM/βM then I(t) ∈ (0, αM/βM ) for

all t > 0 whenever I0 ∈ (0, αM/βM ).

Theorem 5.3 can be generalised as follows:

Theorem 7.5 Assume that T S
0 > 1 and let I0 ∈ (0, N) be arbitrary. The following statements hold with

probability one:

(i) If 0 < α1/β1 = α2/β2 = ... = αM/βM , then limt→∞ I(t) = α1/β1.

(ii) If 0 < α1/β1 ≤ α2/β2 ≤ ... ≤ αM/βM , then

α1

β1
≤ lim inf

t→∞
I(t) ≤ lim sup

t→∞
I(t) ≤

αM

βM
.

(iii) If αj/βj ≤ 0 (for some j ∈ (1,M − 1)) and α1/β1 ≤ α2/β2 ≤ ... ≤ αM/βM , then

0 ≤ lim inf
t→∞

I(t) ≤ lim sup
t→∞

I(t) ≤
αM

βM
.

These stronger results indicate that I(t) will enter the region (0 ∨ (α1/β1), αM/βM ) in finite time and with

probability one will stay in this region once it is entered.

Theorem 5.4 can be generalised as follows:

Theorem 7.6 Assume that T S
0 > 1 and 0 < α1/β1 ≤ α2/β2 ≤ ... ≤ αM/βM , and let I0 ∈ (0, N) be arbitrary.

Then for any ε > 0, sufficiently small for

α1

β1
+ ε <

∑M
k=1 πkαk

∑M
k=1 πkβk

<
αM

βM
− ε,

the solution of the stochastic SIS model (2.3) has the properties that

P

(

lim inf
t→∞

I(t) <
α1

β1
+ ε

)

≥ eν11T1(ε),

and

P

(

lim sup
t→∞

I(t) >
αM

βM
− ε

)

≥ eνMM T2(ε),
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where T1(ε) > 0 and T2(ε) > 0 are defined by

T1(ε) =
1

α1

(

log
(β1

α1
−

βM

αM

)

+ log
(α1

β1
+ ε

)

− log
(

ε
β1

α1

))

(7.1)

and

T2(ε) =
1

αM

(

log
(β1

α1
−

βM

αM

)

+ log
(αM

βM
− ε

)

− log
(

ε
βM

αM

))

. (7.2)

Also, Theorem 5.5 can be generalised as follows:

Theorem 7.7 Assume that T S
0 > 1, that is

∑M
k=1 πkαk > 0, and αj/βj ≤ 0 (for some j ∈ (1,M − 1)). Let

I0 ∈ (0, N) be arbitrary. Then for any ε > 0, sufficiently small for

ε <

∑M
k=1 πkαk

∑M
k=1 πkβk

<
αM

βM
− ε,

the solution of the stochastic SIS model (2.3) has the properties that

P

(

lim inf
t→∞

I(t) < ε
)

≥ eν11T3(ε),

and

P

(

lim sup
t→∞

I(t) >
αM

βM
− ε

)

≥ eνMM T4(ε).

Here T3(ε) > 0 and T4(ε) > 0 are defined by

T3(ε) =
1

α1

(

log
(βM

αM
−

β1

α1

)

+ log
(

ε
α1

β1

)

− log
(α1

β1
− ε

))

(7.3)

and

T4(ε) =
1

αM

(

log
(2

ε
−

βM

αM

)

+ log
(αM

βM
− ε

)

− log
(

ε
βM

αM

))

. (7.4)

Theorem 7.6 and Theorem 7.7 show that I(t) will take any value arbitrarily close to the boundaries

(0 ∨ (α1/β1), αM/βM ) but never reach them.

The proofs are all very similar to the simple case, so they are omitted here.

To prove (7.4) analogously to the simple case we define the stopping times

σ5 = inf{t ≥ T : r(t) = M}

where T > 0 is arbitrary and

σ6 = inf

{

t ≥ σ5 : r(t) = M, I(t) ≥
1

2

(∑M
k=1 πkαk

∑M
k=1 πkβk

)}

.

By Theorem 7.3 if I(t) ever goes beneath 1
2

PM
k=1 πkαk

PM
k=1 πkβk

it will eventually increase above this level. Hence I(t)

is above this level when the Markov chain switches state infinitely often. Each time that this happens it is

either initially in state M , or switches to state M with probability at least

q = min
n∈[1,2,...M−1]

νnM

−νnn
> 0.
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Therefore each time after σ5 that I(t) reaches the level 1
2

PM
k=1 πkαk

PM
k=1 πkβk

we will have a value of t ≥ σ5 with r(t) = M

and I(t) above the level 1
2

PM
k=1 πkαk

PM
k=1 πkβk

with probability at least q. So considering the first X times after σ5 that

I(t) reaches this level

P (σ6 < ∞) ≥ 1 − (1 − q)X .

Letting X → ∞ we deduce that P (σ6 < ∞) = 1. The proof proceeds as in the simple case.

8 A Slightly More Realistic Example

As a slightly more realistic example to illustrate the two state case, we consider Streptococcus pneumoniae

(S. pneumoniae) amongst children under 2 years in Scotland. This may display a phenomenon called capsular

switching, such that when an individual is co-infected with two strains (or serotypes) of pneumococcus, the

outer polysaccharide capsule that surrounds the genetic pneumococcal material may switch, thus giving

serotypes with possibly different infectivities and infectious periods [7, 9]. In reality the situation is very

complicated, with many pneumococcal serotypes and sequence types (sequence types are ways of coding the

genetic material). This is thought to be due to genetic transfer of material between the two serotypes.

Example 8.1 We illustrate our model by applying it with suitable parameter values to two strains of pneu-

mococcus with switching between them, although the real situation is much more complicated than the model

allows. The parameter values used are taken from Lamb, Greenhalgh and Robertson [21] as follows, where N

is the number of children under 2 years old in Scotland:

N = 150000, γ1 = γ2 = 1/(7.1 wk) = 0.1408/wk = 0.02011/day [38],

µ = 1/(104 wk) = 9.615 ×10−3/wk = 1.3736 ×10−3/day,

β1 = 1.5041 ×10−6/wk = 2.1486 ×10−7/day corresponding to RD
01 = 1.5 [12],

β2 = 2.0055 ×10−6/wk = 2.8650 ×10−7/day corresponding to RD
02 = 2 [40].

As further support that these values for R0 are reasonable Hoti et al. [19] give RD
0 = 1.4 for the spread of S.

Pneumoniae in day-care cohorts in Finland.

So α1 = 0.0107454/day and α2 = 0.0214914/day. We set

ν12 = 0.06/day and ν21 = 0.09/day.

So π1 = 0.6, and π2 = 0.4.

From these values, T S
0 is about 1.7 in this case. Noting that

α1π1 + α2π2 = 0.0150438 > 0,

we can therefore conclude, by Theorem 5.3, that for any given initial value I(0) = I0 ∈ (0, N), the solution of

(2.3) obeys
α1

β1
= 50011.17 ≤ lim inf

t→∞
I(t) ≤ lim sup

t→∞
I(t) ≤ 75013.61 =

α2

β2
.
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That is, I(t) will eventually enter the region (50011.17, 75013.61) if I(0) is not in this region, and will be

attracted in this region once it has entered. The computer simulations in Figure 5 support this result clearly.

We vary the values for the transition rates ν12 and ν21. Figure 6 shows how the different values of the

transition rates affect the behaviour of I(t). We notice that it takes longer to switch between the two states

when the transition rates are small, so I(t) is more likely to approach the boundaries.
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Figure 5: Computer simulation of I(t) using the parameter values in Example 8.1 and its corresponding Markov

chain r(t), using formula (2.5) for I(t), with I(0) = 48500 for (a), I(0) = 60000 for (b) and I(0) = 76500 for

(c), and the exponential distribution for the switching times of r(t), with r(0) = 1. The horizontal lines in

the plot of I(t) indicate the levels α1
β1

and α2
β2

.

9 Summary

In this paper, we have introduced telegraph noise to the classical SIS epidemic model and set up the stochastic

SIS model. Note that the model assumes that the system switches between the two regimes and the Markov

switching is independent of the state of the system. Such an assumption is similar to that made in other

papers [11, 24, 34, 36]. For example external factors such as temperature or availability of food could cause the
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Figure 6: Computer simulation of I(t) using the parameter values in Example 8.1, with ν12 = 0.6/day and

ν21 = 0.9/day for (a), and ν12 = 0.006/day and ν21 = 0.009/day for (b), using formula (2.5) for I(t) with

I(0) = 60000, and the exponential distribution for the switching times of r(t), with r(0) = 1. The horizontal

lines in the plot of I(t) indicate the levels α1
β1

and α2
β2

(which the values of I(t) never quite reach).

disease to spread faster or slower and switch between two or more regimes. In such a situation it is reasonable

to assume that the switching parameter does not depend on the state of the system. We have established the

explicit solution for the stochastic SIS model and also established conditions for extinction and persistence

of the disease. For the stochastic Markov switching model a threshold value T S
0 was defined for almost sure

persistence or extinction. We started with the special case in which the Markov chain has only two states and

then generalised our theory to the general case where the Markov chain has M states. Theorem 7.2 shows

that if T S
0 < 1, the disease will die out. Theorem 7.3 shows that if T S

0 > 1, then the disease will persist. We

also showed Theorem 7.5 that if T S
0 > 1 the number of infectious individuals will enter (0∨ (α1/β1), αM/βM )

in finite time, and with probability one will stay in the interval once entered, and moreover the number of

infectious individuals can take any value up to the boundaries of (0∨ (α1/β1), αM/βM ) but never reach them

(Theorems 7.6 and 7.7).

For j = 1, 2, . . . M , define RD
0j =

βjN

µj+γj
. Note that if αj > 0 then RD

0j > 1 and

αj

βj
= N

(

1 −
1

RD
0j

)

is the long-term endemic level of disease in the SIS model (1.4) with β = βj , µ = µj and γ = γj . If αj ≤ 0

then RD
0j ≤ 1 and disease eventually dies out in the same SIS model. Hence 0 ∨ (α1/β1) is the smallest and

αM/βM is the largest long-term endemic level of disease in each of the M separate SIS models between which

the Markov chain switches.

We have not been able to prove extinction for the case when T S
0 = 1, but the computer simulation shows

that the disease would die out after a long period of time, as we suspect. We have illustrated our theoretical

results with computer simulations, including an example with realistic parameter values for S. pneumoniae
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amongst young children.
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