Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Distance-sum heterogeneity in graphs and complex networks

Estrada, Ernesto and Vargas Estrada, Eusebio (2012) Distance-sum heterogeneity in graphs and complex networks. Applied Mathematics and Computation, 218 (21). pp. 10393-10405. ISSN 0096-3003

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The heterogeneity of the sum of all distances from one node to the rest of nodes in a graph (distance-sum or status of the node) is analyzed. We start here by analyzing the cumulative statistical distributions of the distance-sum of nodes in random and real-world networks. From this analysis we conclude that statistical distributions do not reveal the distance-sumheterogeneity in networks. Thus, we motivate an index of distance-sumheterogeneity based on a hypothetical consensus model in which the nodes of the network try to reach an agreement on their distance-sum values. This index is expressed as a quadratic form of the combinatorial Laplacian matrix of the network. The distance-sumheterogeneity index φ(G) gives a natural interpretation of the Balaban index for any kind of graph/network. We conjecture here that among graphs with a given number of nodes φ(G) is maximized for a graph with a structure resembling the agave plant. We also found the graphs that maximize φ(G) for a given number of nodes and links. Using this index and a normalized version of it we studied random graphs as well as 57 real-world networks. Our findings indicate that the distance-sumheterogeneity index reveals important structural characteristics of networks which can be important for understanding the functional and dynamical processes in complex systems.