Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

The role of DSM + C to facilitate the integration of renewable energy and low carbon energy technologies

Clarke, Joseph Andrew and Hong, Jun and Johnstone, Cameron and Kelly, Nicolas (2007) The role of DSM + C to facilitate the integration of renewable energy and low carbon energy technologies. In: Building simulation 2007 proceedings. Tsinghua University Press, Beijing, pp. 1653-1660. ISBN 9780977170630

Full text not available in this repository. Request a copy from the Strathclyde author


Recent legislation and building regulations have aiming to reduce the energy demands of buildings and include renewable based micro-generation technologies. Due to the variations in energy delivery from these technologies, optimised control over building plant and loads is essential if we are to achieve a good demand-supply match and achieve a reduction in energy demands. This paper reports on research being undertaken as part of the UK EPSRC SuperGen Future Networks programme, specifically relating to the development of algorithms for simulating dynamic demand side control strategies to identify demand-supply matching options when deploying building integrated renewable energy and low carbon technologies. The development of demand side management and control (DSM+c) is a means to improve the dynamic demand-supply match taking account of the available demand side management capacity and time of occurrence. The principle of the developed DSM+c algorithms is to maximise the available control capacity which will enable a better demand-supply match while minimising any impact on users. This paper will demonstrate the application of DSM+c to improve the energy efficiency of a building (e.g. reduced total capacity), restructure the demand pattern via load shifting and switching (e.g. on/off or proportional control) to one more favourable to building integrated renewables. The impact of different control strategies on demand profile restructuring will be demonstrated using simulation to alter the settings of the DSM+c parameters - such as priority, methods and periods - for a given demand profile. The paper will conclude by presenting the outcomes from a case study using the decision support/design tool, MERIT where the developed DSM+c algorithms have been implemented to better facilitate the match between demand and building integrated clean energy supply technologies at the individual multi-familiy building level.