Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Quadratic projection methods for approximating the spectrum of self-adjoint operators

Strauss, M. (2011) Quadratic projection methods for approximating the spectrum of self-adjoint operators. IMA Journal of Numerical Analysis, 31 (1). pp. 40-60. ISSN 0272-4979

Full text not available in this repository. Request a copy from the Strathclyde author


The pollution-free approximation of the spectrum for self-adjoint operators using a quadratic projection method has recently been studied. Higher-order pollution-free approximation can be achieved by combining this technique with a method due to Kato. To illustrate, an example from magnetohydrodynamics is considered. Whether or not this procedure converges to the whole spectrum is unknown. Combining the quadratic method with the Galerkin method, we derive procedures that do converge to the whole spectrum and without pollution.