Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Hybrid super electron donors - preparation and reactivity

Garnier, Jean and THOMSON, Douglas William and Zhou, Sheng-Ze and Jolly, Phillip I and Berlouis, Leonard E A and Murphy, John A (2012) Hybrid super electron donors - preparation and reactivity. Beilstein Journal of Organic Chemistry, 8. pp. 994-1002. ISSN 1860-5397

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Neutral organic electron donors, featuring pyridinylidene–imidazolylidene, pyridinylidene–benzimidazolylidene and imidazolylidene–benzimidazolylidene linkages are reported. The pyridinylidene–benzimidazolylidene and imidazolylidene–benzimidazolylidene hybrid systems were designed to be the first super electron donors to convert iodoarenes to aryl radicals at room temperature, and indeed both show evidence for significant aryl radical formation at room temperature. The stronger pyridinylidene–imidazolylidene donor converts iodoarenes to aryl anions efficiently under appropriate conditions (3 equiv of donor). The presence of excess sodium hydride base has a very important and selective effect on some of these electron-transfer reactions, and a rationale for this is proposed