Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Human reliability analysis—Taxonomy and praxes of human entropy boundary conditions for marine and offshore applications

El-Ladan, S. B. and Turan, O. (2012) Human reliability analysis—Taxonomy and praxes of human entropy boundary conditions for marine and offshore applications. Reliability Engineering and System Safety, 98 (1). pp. 43-54. ISSN 0951-8320

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This is the first stage towards the development of a human reliability model called human entropy (HENT). The paper presents qualitative and quantitative taxonomies and praxes of performance shaping factors (PSF) for Marine and Offshore operations. Three structured and guided expert elicitation methods were used in this study. The experts interrogated accident reports and databases from which the generic root causes of failures/accidents in operations are determined. The elicitations led to the development of 9 qualitative and quantitative human influencing factors, which are called Human Entropy Boundary Conditions (HEBC). Further explications of the 9 HEBC gave birth to 137 quantifiable explanatory variables, which are called hypothetical constructs (HyC). The HyCs are used to identify potential risks due to shrinkages in safety standards. Human entropy is a detour from traditional human error and was used as a result of tripartite human failure modes; error, local rationality and extraneous acts, all of which signify disorderliness and are seemingly inevitable in maritime operations. The praxes and scaling of HEBC was developed as guidance towards a practical oriented HRA and provide inputs for measuring human disorderliness in maritime operations.